Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol., 2001, 56(1-2):69-80
[2]
Chequer F.M., Lizier T.M., De Felício R., at al. Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye Disperse Red 1. Toxicol in Vitro, 2011, 25(8):2054-2063
[3]
Pandey A., Singh P., Iyengar L. Bacterial decolorization and degradation of azo dyes. Int. Biodeterior. Biodegrad., 2007, 59(2):73-84
[4]
李博, 熊小京, 赵志新, 等. 缺氧-好氧生物滤池中高效菌对活性红KN-3B的降解特性. 环境工程学报, 2009, 3(12):2170-2174 Li Bo, Xiong Xiaojing, Zhao Zhixin, et al. Biodegradation behavior of reactive red KN-3B by highly effective decolorizing strain in anaerobic-aerobic biofilter. Chinese Journal of Environmental Engineering, 2009, 3(12):2170-2174(in Chinese)
[5]
Chengalroyen M.D., Dabbs E.R. The microbial degradation of azo dyes: Minireview. World J. Microbiol. Biotechnol., 2013, 29(3):389-399
[6]
Aranganathan V., Kanimozhi A.M., Palvannan T. Statistical optimization of synthetic azo dye (orange Ⅱ) degradation by azoreductase from Pseudomonas oleovorans PAMD_1. Prep. Biochem. Biotechnol., 2013, 43(7):649-667
[7]
Koupaie E.H., Moghaddam M.R., Hashemi S.H. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines. J. Hazard. Mater., 2011, 195(15):147-154
[8]
Hosseini K.E., Alavi M.M.R., Hashemi S.H. Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye acid red 18: Comparison of using two types of packing media. Bioresour. Technol., 2013, 127:415-421
[9]
Ip A.W.M., Barford J.P., Mckay G. Biodegradation of Reactive Black 5 and bioregeneration in upflow fixed bed bioreactors packed with different adsorbents. J. Chem. Technol. Biotechnol., 2010, 85(5):658-667
[10]
Bahareh K., Babak B., Shahrzad F. The effect of salt on the performance and characteristics of a combined anaerobic-aerobic biological process for the treatment of synthetic wastewaters containing Reactive Black 5. Chem. Eng. J., 2013, 221(1): 363-372
[11]
Kudlich M., Hetheridge M.J., Knackmuss H.J., et al. Autoxidation reactions of different aromatic o-aminohydroxynaphthalenes that are formed during the anaerobic reduction of sulfonated azo dyes. Environ. Sci. & Technol., 1999, 33(6):896-901
[12]
Libra J.A., Borchert M., Vigelahn L., et al. Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites. Chemosphere, 2004, 56(2): 167-180
[13]
Li G., Park S., Rittmann B.E. Degradation of reactive dyes in a photocatalytic circulating-bed biofilm reactor. Biotechnol. Bioeng., 2012, 109(4):884-893
[14]
N?dler K., Licha T., Barbieri M., et al. Evidence for the microbially mediated abiotic formation of reversible and non-reversible sulfamethoxazole transformation products during denitrification. Water Res., 2012, 46(7):2131-2139
[15]
Labet V., Grand A., Morell C., et al. Mechanism of nitric oxide induced deamination of cytosine. Phys. Chem. Chem. Phys., 2009, 11(14):2379-2386
[16]
Liu H., Guo J., Qua J., et al. Biological catalyzed denitrification by a functional electropolymerization biocarrier modified by redox mediator. Bioresour. Technol., 2012, 107: 144-150
[17]
Maria L.C., Miguel A.S.M., Asuncion R., at al. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Scientific Reports, 2013, 3(2): 1-7
[18]
Khandare R.V., Rane N.R., Waghmode T.R., et al. Bacterial assisted phytoremediation for enhanced degradation of highly sulfonated diazo reactive dye. Environ. Sci. Pollut. Res. Int., 2012, 19(5):1709-1718