In the rate-distortion optimization (RDO), the process of choosing the best prediction mode is performed through exhaustive executions of the whole encoding process, increasing significantly the encoder computational complexity. Considering H.264/AVC intra frame prediction, there are several modes to encode a macroblock (MB). This work proposes an algorithm and the hardware design for a fast intra frame mode decision module for H.264/AVC encoders. The application of the proposed algorithm reduces in more than 10 times the number of encoding iterations for choosing the best intramode when compared with RDO-based decision. The architecture was synthesized to FPGA and achieved an operation frequency of 98?MHz processing more than 300?HD1080p frames per second. With this approach, we achieved one order-of-magnitude performance improvement compared with RDO-based approaches, which is very important not only from the performance but also from the energy consumption perspective for battery-operated devices. In order to compare the architecture with previously published works, we also synthesized it to standard cells. Compared with the best previous results reported, the implemented architecture achieves a complexity reduction of five times, a processing capability increase of 14 times, and a reduction in the number of clock cycles per MB of 11 times. 1. Introduction H.264/AVC is the state-of-art video compression standard proposed by ITU-T and ISO-IEC [1]. It has shown significantly better coding performance than existing video coding standards, for example, about 50% bit-rate reduction compared with MPEG-2, and, for this reason, it has been adopted by most of electronic devices that encode digital video, such as camcorders and mobile phones. A huge amount of coding options have been included in the H.264/AVC encoder to achieve a better coding efficiency for different video sequences. Since all video codecs, as well as H.264/AVC, include lossy compression schemes, the video encoder must know how much the video quality is degraded for a given target quality, that is, there is a direct relation between the amount of bits of the coded video and its visual quality. Figure 1 shows how the video quality behaves for a target bit-rate of a coded video. The video quality is measured in peak signal-to-noise ratio (PSNR), and the bit-rate is measured in bits per second (bps). The point a in Figure 1 shows a very low bit-rate video with very degraded quality, which is not desirable for most applications. The point c in Figure 1 shows a higher quality video but with very
References
[1]
ITU-T Recommendation H.264/AVC (05/03): advanced video coding for generic audiovisual services, 2003.
[2]
G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for: video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74–90, 1998.
[3]
S. B. Solak and F. Labeau, “Complexity scalable video encoding for power-aware applications,” in Proceedings of the International Green Computing Conference, pp. 443–449, Chicago, Ill, USA, August 2010.
[4]
J.-C. Wang, J.-F. Wang, J.-F. Yang, and J.-T. Chen, “A fast mode decision algorithm and its vlsi design for H.264/AVC intra-prediction,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 10, pp. 1414–1422, 2007.
[5]
Y.-C. Kao, H.-C. Kuo, Y.-T. Lin et al., “A high-performance VLSI architecture for intra prediction and mode decision in H.264/AVC video encoding,” in Proceedings of IEEE Asia Pacific Conference on Circuits and Systems (APCCAS '06), pp. 562–565, Singapore, December 2006.
[6]
Y.-K. Lin, C.-W. Ku, D.-W. Li, and T.-S. Chang, “A 140-MHz 94?K gates HD1080p 30-frames/s intra-only profile H.264 encoder,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 3, pp. 432–436, 2009.
[7]
C. C. Cheng and T. S. Chang, “Fast three step intra prediction algorithm for 4x4 blocks in H.264/AVC,” in Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 2, pp. 769–772, May 2005.
[8]
M. Parlak, Y. Adibelli, and I. Hamzaoglu, “A novel computational complexity and power reduction technique for H.264 intra prediction,” IEEE Transactions on Consumer Electronics, vol. 54, no. 4, pp. 2006–2014, 2008.
[9]
Y. H. Huang, T. S. Ou, and H. H. Chen, “Fast decision of block size, prediction mode, and intra block for H.264 intra prediction,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 8, pp. 1122–1132, 2010.
[10]
J. H. Min, S. Lee, I. K. Kim, W. J. Han, J. Lainema, and K. Ugur, “Unification of the directional intra prediction methods in TMuC,” in Proceedings of the 2nd Meeting of Joint Collaborative Team on Video Coding, JCTVC-B100, Geneva, Switzerland, July 2010.
[11]
J. H. Min, S. Lee, I. K. Kim, W. J. Han, J. Lainema, and K. Ugur, “TE4: Results for Simplification of Unified Intra Prediction,” JCTVC-C042, Guangzhou, China , 2010.
[12]
L. Zhao, L. Zhang, S. Ma, and D. Zhao, “Fast mode decision algorithm for intra prediction in HEVC,” in Proceedings of IEEE Visual Communications and Image Processing, pp. 1–4, Tainan, Taiwan, November 2011.
[13]
T. Wiegand, G. J. Sullivan, G. Bj?ntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.
[14]
JM H.264 reference software version 16.2, http://iphome.hhi.de/suehring/tml/.
[15]
“Video Library and Tools,” http://nsl.cs.sfu.ca/wiki/index.php/Video_Library_and_Tools#1080p.
[16]
Altera Corporation, “Altera: The Programmable Solutions Company,” http://www.altera.com.