全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

蛋白酶和EDTA-2Na协同作用对剩余污泥水解的影响

Keywords: 剩余污泥,蛋白酶,乙二胺四乙酸二钠,协同作用,水解

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用投加蛋白酶和螯合剂乙二胺四乙酸二钠(EDTA-2Na)联合预处理剩余污泥,研究了蛋白酶浓度、温度和EDTA-2Na浓度对污泥酶法水解释碳效果的影响。结果表明,蛋白酶浓度、温度和EDTA-2Na浓度对剩余污泥水解的影响具有协同效应。在最佳蛋白酶浓度20mg/gTS条件下,剩余污泥释放的SCOD为1318.82mg/L。同时,在最佳螯合剂EDTA-2Na浓度0.20g/gTS下,SCOD为9014mg/L。在20mg/gTS的蛋白酶和0.20g/gTS的EDTA-2Na的联合作用下,SCOD达到12628.98mg/L。在20mg/gTS的蛋白酶、0.2g/gTS的EDTA-2Na和55℃条件联合作用下,SCOD达到最大值16878mg/L,多糖浓度达到最大值2695.3mg/L,NH4+-N的浓度达到最大值156.73mg/L。此外,在不同蛋白酶和EDTA-2Na浓度条件下,剩余污泥水解释放的SCOD符合一级动力学。

References

[1]  王洪臣.污泥处理处置设施的规划建设与管理.中国给水排水, 2010,26(14):1-6 Wang Hongchen. Planning construction and management of sludge treatment and disposal facilities. China Water & Wastewater, 2010,26(4):1-6(in chinese)
[2]  盛宇星, 曹宏斌, 李玉平, 等. 预处理对废弃活性污泥中细胞破碎和有机物溶出的影响. 化工学报, 2008,59(6):1496-1501 Sheng Yuxing, Cao Hongbin, Li Yuping, et al. Effect of pretreatment methods on breaking up bacteria and solubilization of organic substances in waste activated sludge. Journal of Chemical Industry and Engineering, 2008,59(6):1496-1501(in Chinese)
[3]  Barjenbruch M., Kopplow O. Enzymatic, mechanical and thermal pre-treatment of surplus sludge. Advances in Environmental Research, 2003,7(3):715-720
[4]  Whiteley C., Heron P., Tshivhunge T., et al. The enzymology of sludge solubilisation utilising sulphate reducing systems. Enzyme and Microbial Technology, 2001,31(4):419-424
[5]  Elsayed E., George N., Hisham H., et al. Single and combined effect of various pretreatment methods for biohydrogen production from food waste. International Journal of Hydrogen Energy, 2011,36(17):1-9
[6]  Xu W. H., Li W. Y., He J. P., et al. Effects of insoluble Zn, Cd, and EDTA on the growth, activities of antioxidant enzymes and uptake of Zn and Cd in vetiveria zizanioides. Journal of Environmental Sciences, 2009,21(2):186-192
[7]  Miron Y., Zeeman G., Vanlier B., et al. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Research, 2000,34(5):1705-1713
[8]  Dubois, Gilles K. A., Hamilton J. K., et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956,28(3):350-356
[9]  Raposo F., Rubia M., Borja R., et al. Assessment of a modified and optimised method for determining chemical oxygen demand of solid substrates and solutions with high suspended solid content. Talanta, 2008,76(2):448-453
[10]  Manimozhi P., Subbiah A., Rajendran L. Solution of steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics. Sensors and Actuators B, 2010,147(1):290-297
[11]  Wawrzynczyk J., Szewczyk E., Szwajcer D. E., et al. Application of enzymes, sodium tripolyphosphate and cation exchange resin for the release of extracellular polymeric substances from sludge. Journal of Biotechnology, 2007,130(3):274-281
[12]  Liu X. L., Liu H., Du G. C., et al. Enhancement of solubilization and acidification of waste activated sludge by pretreatment. Waste Management, 2008,28(12):2614-2622
[13]  Roman H. J., Bergess J. E., Pletschke B. I., et al. Enzyme treatment to decrease solids and improve digestion of primary sewage sludge. African Journal of Biotechnology, 2006,10(5):963-967
[14]  Yu G. H., He P. J., Shao L. M., et al. Enzyme extraction by ultrasound from sludge flocs. Journal of Environmental Science, 2009,21(2):204-210
[15]  Luo K., Li X. M., Zeng G. M., et al. Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresource Technology, 2011,102(14): 7103-7110
[16]  Joanna W., Micgael R., Estera S., et al. The function of cation-binding agents in the enzymatic treatment of municipal sludge. Water Research, 2008,42(6-7):1555-1562
[17]  Ye F. X., Peng G., Li Y. Influences of influent carbon source on extracellular polymeric substance(EPS) and physicochemical propertieso factivated sludge. Chemosphere, 2011,84(9):1250-1255
[18]  于静, 罗琨, 李小明, 等. 表明活性剂促进剩余污泥酶法水解的研究. 环境科学, 2011,32(8):2328-2332 Yu Jing, Luo Kun, Li Xiaoming, et al. Enhanced enzymatic hydrolysis of excess sludge by surfactant. Environmental Science, 2011,32(8):2328-2332(in Chinese)
[19]  Shanableh A., Jona S. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment. Water Science and Technology, 2001,44(10):129-135
[20]  张玉兰, 陈利军, 刘桂芬, 等. 土壤水解酶类催化动力学研究进展. 应用生态学报, 2003,14(12):2326-2332 Zhang Yulan, Chen Lijuan, Liu Guifen, et al. Research advance in catalytic kinetics of soil hydrolase. Chinese Journal of Applied Ecology, 2003,14(12):2326-2332(in Chinese)
[21]  Virkutyte J., Rokhina E., Lens P., et al. The effect of electrodialytic treatment and Na2H2EDTA addition on methanogenic activity of copper-amended anaerobic granular sludge: Treatment costs and energy consumption. Bioresource Technology, 2011,102(9):5541-5544
[22]  Mendes-Pinto M. M., Raposo M. F. J., Morais M., et al. Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: Effects on astaxanthin recovery and implications for bio-availability. Journal of Applied Phycology, 2011,13(1):19-24
[23]  Marie Francois Jean. A simple method for quantitative determination of polysaccharides in fungal cell walls. Nature Protocols, 2007,1(6):2995-3000
[24]  Luo K., Yang Q., Li X. M., et al. Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced by α-amylase. Biochemical Engineering Journal, 2012,62(15):17-21

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133