全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

影响钝顶螺旋藻固碳的环境因子优化

Keywords: 钝顶螺旋藻,CO2浓度,温度,光周期,固碳

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高钝顶螺旋藻生长过程中的固碳速率,从CO2浓度、温度和光周期3个主要环境因子进行优化。实验结果表明,钝顶螺旋藻在2L三角瓶中培养时,最佳培养条件为10%CO2,温度30℃,光周期16/8。最佳培养条件下,钝顶螺旋藻对数生长期内比生长速率与固碳速率均达到峰值0.512d-1和42.506mg/(L·h)。此外,钝顶螺旋藻的底物消耗表明培养液中的N、P足量,其初始添加量可以满足藻体的生长需要;生长过程中补加10%CO2一方面补充钝顶螺旋藻可吸收碳源,另一方面有利于缓解培养液pH升高对藻生长的影响。

References

[1]  Florides A. G., Christodoulides P. Global warming and carbon dioxide through sciences. Environment International,2009, 35(2): 390-401
[2]  杨忠华, 杨改, 李方芳, 等. 利用微藻固定CO2实现碳减排的研究进展. 生物加工过程,2011, 9(1):66-75 Yang Z. H., Yang G., Li F. F., et al. Recent progress in fixation of CO2 with microalgae for carbon emission reduction. Chinese Journal of Bioprocess Engineering,2011, 9(1): 66-75(in Chinese)
[3]  Ana P. C., Lisiane F. C., Luzia G., et al. Carbon dioxide flxation by microalgae cultivated in open bioreactors. Energy Conversion and Management,2011, 52(8-9): 3071-3073
[4]  Kumar K., Dasqupta C. N., Nayak B., et al. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology,2011, 102(8): 4945-4953
[5]  徐少琨, 张峰, 向文洲, 等. 微藻应用于煤炭烟气减排的研究进展. 地球科学进展,2011, 26 (9): 8-17 Xu S. K., Zhang F., Xiang W. Z., et al. Progress in the study of removal from coal fired flue gas by microalgae. Advance in Earth Science,2011, 26(9): 8-17(in Chinese)
[6]  Eduardo B. S., Wilerson S., Julio C. C., et al. Potential carbon dioxide flxation by industrially important microalgae. Bioresource Technology,2010, 101(15): 5892-5896
[7]  De M. M., Costa J. A. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Bioresource Technology,2007, 129(3): 439-445
[8]  Tredici M. R., Zittelli G. C. Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnology Bioenergy,1998, 57 (2): 187-197
[9]  Sydney E. B., Sturm W., De Carvalho J. C., et al. Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology,2010, 101(15): 5892-5896
[10]  Brennan L., Owende P. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews,2010, 14(2): 557-577
[11]  Chiu S.Y., Kao C.Y.,Chen C. H., et al. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology,2008, 99(9): 3389-3396
[12]  Binaghi L., Del Borghi A., Lodi A., et al. Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochemistry,2003, 38(9): 1341-1346
[13]  Soletto D., Binaghi L., Ferrari L., et al. Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochemical Engineering Journal,2008, 39(2): 369-375
[14]  Pierre H. R., Dominique H. R., Claire J. C. Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food and Bioproducts Processing,2011, 89(3): 209-216
[15]  Luciane M. C., Christian O. R., Carolina R., Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology,2007, 98(7): 1489-1493
[16]  Oliveira M. A. C. L., Monteiro M. P. C., Robbs P. G., et al. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture International,1999, 7(4): 261-275
[17]  Vonshak A., Abeliovich A., Boussiba S., et al. Production of Spirulina biomass: Effects of environmental factors and population density. Biomass, 1982, 2(3):175-185
[18]  Steve L. M., Dean R. N., Jeffrey W. B. Effect of temperature, salinity and light intensity on the growth and seasonality of toxic dinoflagellates associated with ciguatera. Journal of Experimental Marine Biology and Ecology,1992, 157(l): 79-90
[19]  李乐农, 郭宝江. 光照时间对螺旋藻生长的影响. 海洋科学,1998, (3): 3-4 Li L. N., Guo B. J. The effect of time of lightening on growth of Spirulina platensis. Marine Science,1998, (3): 3-4 (in Chinese)
[20]  曾文炉, 蔡昭铃, 欧阳藩. 二十一世纪的理想食品-螺旋藻. 生物进展,2001, 21(5): 29-35 Zeng W. L., Cai Z. L., Ou Y. F. The ideal nourishment rescources for the next century-The Spirulina. Progress in Biotechnology,2001, 21(5): 29-35 (in Chinese)
[21]  吴红艳. 钝顶螺旋藻的无机碳吸收及其碳酸酐酶作用. 自然科学进展,2006, 16(5): 633-636 Wu H. Y. The absorption of inorganic carbon and the role of carbonic anhydrase of Spirulina platensis. Progress in Natural Science,2006, 16(5): 633-636 (in Chinese)
[22]  邱保胜, 高坤山. 蓝藻浓缩二氧化碳的机制. 植物生理学通报,2001, 37(5): 385-392 Qiu B. S., Gao K. S. Carbon Dioxide Concentrating Mechanism in Blue-green Algae. Chinese Bulletin of Botany,2001, 37(5): 385-392(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133