Cong Y., Zhang J.L., Chen F., et al. Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (Ⅲ). J. Phys. Chem. C, 2007, 111(28): 10618-10623
[2]
Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269-271
[3]
Zou Z.G., Ye J., Sayama K., et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414(6864): 625-627
[4]
Shahed U M Khan., Mofareh Al-Shahry., William B Ingler. Efficient photochemical water splitting by a chemically modified n-TiO2.Science, 2002, 297(5590): 2243-2245
[5]
Yi Z.G., Ye J.H., Kikugawa N., et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater., 2010, 9(7): 559-564
[6]
Zhang J.L., Wu Y.M., Xing M.Y., et al. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci., 2010, 3(6): 715-726
Chen X.B., Liu L., Yu P.Y., et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746-750
[9]
Liu G., Wang L.Z., Yang H.G., et al. Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem., 2010, 20(5): 831-843
[10]
王西峰,彭党聪,班云霄. 负载TiO2/Fe3+的玻璃纤维反应器光催化苯酚. 环境工程学报,2012, 6(7): 2299-2314 Wang Xifeng, Peng Dangcong, Ban Yunxiao. Photo-catalytic degradation of phenol with TiO2/Fe3+ coated on glass fiber. Chinese Journal of Environmental Engineering, 2012, 6(7): 2299-2314(in Chinese)
[11]
Zhang L.S., Wang W.Z., Zhou L., et al. Bi2WO6 nano-and microstructures: Shape control and associated visible-light-driven photocatalytic activities. Small, 2007, 3(9): 1618-1625
[12]
Zhang L.W., Xu T.G., Zhao X., et al. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl. Catal. B-Environ., 2010, 98(3-4): 138-146
[13]
Yu J.Q., Kudo A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv. Funct. Mater., 2006, 16(16): 2163-2169
[14]
Dunkle S.S., Suslick K S. Photodegradation of BiNbO4 powder during photocatalytic reactions. J.Phys. Chem. C, 2009, 113(24): 10341-10345
[15]
Huo Y. N., Miao M., Zhang Y., et al. Aerosol-spraying preparation of a mesoporous hollow spherical BiFeO3 visible photocatalyst with enhanced activity and durability. Chem. Commun., 2011, 47(7): 2089-2091
[16]
Zhang X., Ai Z.H., Jia F.L.,et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C, 2008, 112(3): 747-753
[17]
Bian Z.F., Huo Y.N., Zhang Y., et al. Aerosol-spay assisted assembly of Bi2Ti2O7 crystals in uniform porous microspheres with enhanced photocatalytic activity. Appl. Catal. B-Environ., 2009, 91(1-2): 247-253
[18]
Zheng Y., Duan F., Chen M.Q., et al. Synthetic Bi2O2CO3 nanostructures: Novel photocatalyst with controlled special surface exposed. J. Mol. Catal. A-Chem., 2010, 317(1-2): 34-40
[19]
Taylor P., Sundek S., Lopata V.J. Structure, spectra and stability of solid bismuth carbonates. Can. J. Chem., 1984, 62(12): 2863-2873
[20]
Grice J.D. A solution to the crystal structures of bismutite and beyerite. Can. Mineral., 2002, 40(2): 693-698
[21]
Chen R., So M. H., Yang J., et al. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate. Chem Commun, 2006, 21: 2265-2267
[22]
Chen R., Cheng G., Hoso M., et al. Bismuth subcarbonate nanoparticles fabricated by water-in-oil microemulsion-assisted hydrothermal process exhibit anti-Helicobacter pylori properties. Mater. Res. Bull., 2010, 45(5): 654-658
[23]
Chen X.G., Huh H., Lee S.W. Controlled synthesis of bismuth oxo nanoscale crystals (BiOCl, Bi12O17Cl2, alpha-Bi2O3, and (BiO) 2CO3) by solution-phase methods. J. Solid. State. Chem., 2007, 180(9): 2510-2516
[24]
Cheng H.F., Huang B.B., Yang K.S., et al. Facile template-free synthesis of Bi2O2CO3 hierarchical microflowers and their associated photocatalytic activity. ChemPhys Chem., 2010, 11(10): 2167-2173
[25]
Liu Y.Y., Wang Z.Y., Huang B.B., et al. Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet. Appl. Surf. Sci., 2010, 257(1): 172-175
[26]
Dong F., Sun Y.J., Fu M., et al. Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst.Langmuir, 2012, 28(1): 766-773
[27]
Dong F., Ho W.K., Lee S.C., et al. Template-free fabrication and growth mechanism of uniform (BiO)2CO3 hierarchical hollow microspheres with outstanding photocatalytic activities under both UV and visible light irradiation.J. Mater. Chem., 2011, 21(33): 12428-12436
[28]
Dong F., Guo S., Wang H.Q., et al. Enhancement of the visible light Photocatalytic activity of C-doped TiO2 nanomaterials prepared by green synthetic approach. J. Phys. Chem. C, 2011, 115(27): 13285-13292
[29]
Wu Z.B., Dong F., Zhao W.R., et al. Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride, J. Hazard. Mater., 2008, 157(27): 57-63
[30]
Dong F., Sun Y.J., Ho W.K., et al. Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-dopedismuth subcarbonate hierarchical nanosheets architectures. Dalton Trans., 2012, 41(27): 8270
[31]
Dong F., Lee S.C., Wu Z.B., et al. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: One-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air. J. Hazard. Mater., 2011, 195: 346-354