全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

稻草的水热碳化研究

Keywords: 稻草,水热碳化,生物炭,葡萄糖,乙酸

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用水热碳化技术,在1000mL的反应釜中,考察了反应温度和停留时间对于稻草水热碳化的影响。结果表明,稻草碳化得到的气相产物主要为CO2、液相产物主要为乙酸和葡萄糖。随着反应温度和停留时间的提高,CO2、乙酸的产率以及生物炭(固相产物)的能量密度呈上升趋势,而生物炭的产率则呈现相反的趋势。在低温条件下(200℃左右),可获得较高葡萄糖产率。生物炭的吸水性实验表明,在反应温度为260℃,停留时间为1h的条件下,生物炭的产率达到稳定。扫描电镜分析结果说明,经过碳化后的稻草整体呈现碎片状态,并伴有大量蜂窝状结构。

References

[1]  Sevilla M., Juan A. M., Antonio B. F. Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass and Bio-Energy, 2011,35(7): 3152-3159
[2]  毕于运, 寇建平, 王道龙,等. 中国秸秆资源综合利用技术. 北京:中国农业科学技术出版社, 2008
[3]  毕于运, 高春雨, 王亚静, 等. 中国秸秆资源数量估算.农业工程学报, 2009,25(12): 211-217 Bi Y. Y., Gao C. Y., Wang Y. J., et al. Estimation of straw resources in China. Transactions of the CSAE, 2009,25(12): 211-217 (in Chinese)
[4]  陈静萍, 王克勤, 熊兴耀, 等. 60Coγ辐照对稻草纤维组织及酶解效果的影响. 核农学报, 2008, 22(3): 304-309 Chen J. P.,Wang K. Q., Xiong X. Y., et al. Effect of 60Coγ-rays irradiation of straw fiber structure and enzyme hydrolyzation. Journal of Nuclear Agricultural Sciences, 2008, 22(3): 304-309 (in Chinese)
[5]  徐龙君,安丽娜,农丽薇,等.稀盐酸预处理对稻草厌氧消化的影响.环境工程学报,2011,3(3):671-674 Xu L. Y.,An L. N.,Nong L. W.,et al. Effect of pretreatment of dilute hydrochloric acid on anaerobic digestion of rice straw. Chinese Journal of Environmental Engineering,2011,3(3):671-674 (in Chinese)
[6]  Hoekman S. K., Broch A., Robbins C. Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels, 2011,25(4): 1802-1810
[7]  Steven M. H., Ted D., Lindsey R. J., et al. Hydrothermal carbonization of microalgae. Biomass and Bio-Energy, 2010,34(6): 875-882
[8]  Steven M. H., Lindsey R. J., Michael J. S. Hydrothermal carbonization of distiller\'s grains. Biomass and Bio-Energy, 2010,35(7): 2526-2533
[9]  Herbert D., Phipps P. J., Strange R. E. Chapter III Chemical Analysis of Microbial Cells. Methods in Microbiology, 1971,5(B): 209-344
[10]  Lam P. S., Sokhansanj S., Bi X. T., et al.Energy input and quality of pellets made from steam exploded douglas fir (Pseudotsuga menziesii). Energy Fuels, 2011,25(4): 1521-1528
[11]  Peterson A. A., Vogel F., Lachance R. P., et al. Thermo-chemical biofuel production in hydrothermal media: A review of sub-and supercritical water technologies. Energy Environment Science, 2008,10(1): 32-65
[12]  Yu Y., Lou X., Wu H. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuels, 2008,22(1): 46-60
[13]  Funke A., Ziegler F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioproducts and Biorefining, 2010,4(2): 160-177
[14]  Levine R. B., Pinnarat T., Savage P. E. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels, 2010,24(9): 5235-5243
[15]  Ruyter H. P. Coalification model. Fuel, 1982,61(12): 1182-1187
[16]  Yan W., Acharjee T. C., Coronella C. J., et al. Thermal pretreatment of lignocellulosic biomass. Environmental Progress and Sustainable Energy, 2009,28(3): 435-440
[17]  Sevilla M., Fuertes A. B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon,2009, 47(9): 2281-2289

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133