全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

两相分配式生物反应器处理高盐废水中的苯酚

Keywords: 两相分配式生物反应器,溶剂萃取,苯酚,盐溶液

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用新型两相分配式生物反应器(TPPB)和前期研究得到的高效苯酚降解菌对高盐废水中苯酚的降解进行研究,研究中确定煤油为反应系统的最佳有机溶剂,并考察了废水苯酚含量、废水盐度以及搅拌器搅拌速度对苯酚降解的影响。结果表明,反应系统能正常降解苯酚含量为1000~2500mg/L的高盐苯酚废水;反应系统在含盐量为100gNaCl/L、搅拌速度为50r/min的运行工况条件下,降解时间缩短为52h,总酚去除率为20.58mg/(L·h)。

References

[1]  王志霞,王志岩,武周虎.高盐度废水生物处理现状与前景展望.工业水处理, 2002, 22(11):1-4 Wang Zhixia, Wang Zhiyan, Wu Zhouhu. Present situation and prospect of the biological treatment of wastewater with high salinity.Industrial Water Treatment, 2002, 22(11):1-4 (in Chinese)
[2]  Lefebvre O., Moletta R. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res., 2006, 40(20):3671-3682
[3]  Daugulis A.J., Collins L.D. Biodegradation of phenol at high initial concentrations in two-phase partitioning batch and fed-batch bioreactors. Biotechnol. Bioeng., 1997, 55(1):155-162
[4]  Collins L.D., Daugulis A.J. Characterization and optimization of a two-phase partitioning bioreactor for the biodegradation of phenol. Appl. Microbiol. Biotechnol., 1997, 48(1): 18-22
[5]  Daugulis A.J. Two-phase partitioning bioreactors: A new technology platform for destroying xenobiotics. Trends Biotechnol., 2001, 19(11):457-462
[6]  Munoz R., Chambaud M., Bordel S., et al. A systematic selection of the non-aqueous phase in a bacterial two liquid phase bioreactor treating α-pinene. Appl. Microbiol. Biotechnol., 2008, 79(1):33-41
[7]  Li Y.G., Li W.L., Huang J.X., et al. Biodegradation of carbazole in oil/water biphasic system by a newly isolated bacterium Klebsiella sp. LSSE-H2. Biochem. Eng. J., 2008, 41(2): 166-170
[8]  龙腾锐, 张钊, 莊瑞鑫. 苯酚降解菌CN-6的分离及其生长特性.土木建筑与环境工程,2010,32(5):82-87 Long Tengrui, Zhang Zhao, Zhuan Ruixin. Biodegradation of phenol by a novel isolated bacterium Pseudomonas sp. CN-6. Journal of Civil,Architectural & Environmental Engineering,2010,32(5):82-87(in Chinese)
[9]  Alimova A., Roberts M. Effects of smectite clay on biofilm formation by microorganisms. Biofilms, 2006, 3(1): 47-54
[10]  El-Naas M.H., Al-Muhtaseb S.A., Makhlouf S. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. Hazard. Mater., 2009, 164(2-3):720-725
[11]  Pan G., Kurumada K.I. Hybrid gel reinforced with coating layer for removal of phenol from aqueous solution. Chem. Eng., 2008, 138(1-3): 194-199
[12]  Peyton B.M., Wilson T., Yonge D.R. Kinetics of phenol biodegradation in high salt solutions. Water Res., 2002, 36(19):4811-4820
[13]  Nuhoglu A., Yalcin B. Modelling of phenol removal in a batch reactor. Process Biochem., 2005,40(3-4): 1233-1239
[14]  Agarry S.E., Durojaiye A.O., Solomon B.O. Microbial degradation of phenols: A review. Int. J. Environ. Pollut., 2008, 32(1):12-28
[15]  Chung T.P., Tseng H.Y., Juang R.S. Mass transfer and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochemistry, 2003, 38(10):1497-1507
[16]  Gardin H., Lebeault J.M., Pauss A. Biodegradation of xylene and butyl acetate using aqueous-silicon oil two-phase system. Biodegradation, 1999, 10(3): 193-200
[17]  Munoz R., Arriaga S., Hernandez S., et al. Enhanced hexane biodegradation in a two-phase partitioning bioreactor: Overcoming pollutant transport limitations. Process Biochem., 2006, 41(7):1614-1619
[18]  Juang R.S., Huang W.C. Use of membrane contactors as two-phase bioreactors for the removal of phenol in saline and acidic solutions. Membr. Sci., 2008, 313(1-2):432-438
[19]  Carvalho J. M. R., Correia P. F. M. M. Salt effects on the recovery of phenol by liquid-liquid extraction with Cyanex 923. Sep. Sci. Technol., 2005, 40(16): 3365-3380

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133