全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

热解温度和时间对生物干化污泥生物炭性质的影响

Keywords: 生物干化污泥,生物炭,热解,资源化

Full-Text   Cite this paper   Add to My Lib

Abstract:

污泥热解制备生物炭是一种很有潜力的污泥资源化处置方式,然而,生物炭产量和品质因污泥原料性质、热解条件(如热解温度、时间)的不同而存在显著差异。以生物干化污泥为主要研究对象,系统考察了热解温度及时间等热解因素对生物炭品质的影响。实验结果表明,随着热解温度的升高(300~700℃),热解时间的增加(2~4h),生物炭产率均下降。低温热解(300℃)生物炭,偏酸性,而高温热解时(700℃)生物炭,偏碱性。生物炭N含量随着热解温度的升高、热解时间的增加而降低,而P、K及微量元素随着热解温度的升高,热解时间的增加而增加。DTPA浸提结果表明,高温热解明显降低了生物炭中微量元素的生物有效性。

References

[1]  Mustafa K. Hossain, Vladimir Strezov, K. Yin Chan, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 2011, 92(1): 223-228
[2]  Cogger S. G., Forge T. A., Neilsen G. H. Biosolid recycling: nitrogen management and soil ecology. Canadian Journal of Soil Science, 2006, 86(4): 613-620
[3]  Bagreev A., Bandosz T. J., Locke D. C. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage derived fertilizer. Carbon, 2001, 39(13): 1971-1979
[4]  余杰, 田宁宁, 王凯军, 等.中国城市污水处理厂污泥处理、处置问题探讨分析. 环境工程学报, 2007, 1(1):82-86 Yu Jie, Tian Ningning, Wang Kaijun, et al. Analysis and discussion of sludge disposal and treatment of sewage treatment plants in China. Chinese Journal of Environmental Engineering, 2007, 1(1): 82-86 (in Chinese)
[5]  丘锦荣,吴启堂,卫泽斌等. 城市污泥干燥研究进展. 生态环境, 2007, 16(2): 667-671 Qiu Jinrong, Wu Qitang, Wei Zebin, et al. Research advances in municipal sludge drying. Ecology and Environment, 2007, 16(2): 667-671 (in Chinese)
[6]  郭松林, 陈同斌, 高定, 等. 城市污泥生物干化的研究进展与展望. 中国给水排水, 2010, 26(5): 102-105 Guo Songlin, Chen Tongbin, Gao Ding, et al. Research progress and prospect of sewage sludge biodrying. China Water & Wastewater, 2010, 26(5): 102-105 (in Chinese)
[7]  熊思江, 章北平, 玉东科, 等. 干燥污泥与含水污泥的热解动力学研究. 华中科技大学学报(自然科学版), 2011, 39(2): 124-128 Xiong Sijiang, Zhang Beiping, Yu Dongke, et al. Study on pyrolysis kinetics of dried and wet sewage sludge. J. Huazhong Unvi. of Sci. & Tech. (Natural Science), 2011, 39(2): 124-128 (in Chinese)
[8]  Tsai W. T., Lee M. K., Chang Y. M. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction heating reactor. Journal of Analytical and Applied Pyrolysis, 2006, 76(1-2): 230-237
[9]  Gaskin J. W., Steiner C., Harris K., et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans American Society of Agricultural and Biological Engineers, 2008, 51(6): 2061-2069
[10]  中华人民共和国国家标准 GB/T 212-2001 煤的工业分析方法 GB/T 212-2001 Proximate analysis of coal. (in Chinese)
[11]  尚爱安, 刘玉荣, 梁重山, 等. 土壤中重金属有效性研究进展. 土壤, 2000, 32(6): 294-302 Aian Shang, Yurong Liu, Zhongshan Liang, et al. The development of heavy metal bioavailability. Soils, 2000, 32(6): 294-302 (in Chinese)
[12]  Hospido A., Moreira M. T., Martin M., et al. Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: Anaerobic digestion versus thermal process. International Journal of Life Cycle Analysis, 2005, 10(5): 336-345
[13]  Bridle T. R., Pritchard D. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Science and Technology, 2004, 50(9): 169-175
[14]  Strezov V., Evans T. J. Thermal processing of paper sludge and characterization of its pyrolysis products. Waste Management, 2009, 29(5): 1644-1648
[15]  王里奥, 陶玉, 罗书鸾. 利用城市污泥堆肥及建筑弃土种植麦冬研究. 环境工程学报, 2010,4(10): 2367-2372 Wang Liao, Tao Yu, Luo Shuluan, et al. Research of Ophiopogogon japonicus planting by municipal sludge compost and construction abandoned soil. Chinese Journal of Environmental Engineering, 2010, 4(10): 2367-2372 (in Chinese)
[16]  Hwang I. H., Ouchi Y., Matsuto T. Characteristics of leachate from pyrolysis residue of sewage sludge. Chemosphere, 2007, 68(10): 1913-1919
[17]  Caballero J. A., Front R., Marcilla A., et al. Characterization of sewage sludges by primary and secondary pyrolysis. Journal of Analytical and Applied Pyrolysis, 1997, 40-41(5): 433-450
[18]  Lehmann J., Gaunt J., Rondon M. Bio-char sequestration in terrestrial ecosystems: A review. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 403-427
[19]  Peng X., Ye L. L., Wang C. H., et al. Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil & Tillage Research, 2011, 112(2): 159-166
[20]  Yakov Kuzyakov, Irina Subbotina, Haiqing Chen, et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology & Biochemistry, 2009, 41(2): 210-219
[21]  沈伯雄, 张增辉, 李力, 等. 热解终温对污泥热解残渣特性的影响. 环境污染与防治, 2011, 33(2): 7-11 Shen Boxiong, Zhang Zenghui, Li Li, et al. Effect of the final pyrolysis temperature on the characteristics of the pyrolysis residue of sewage sludge. Environmental Pollution & Control, 2011, 33(2): 7-11 (in Chinese)
[22]  邵敬爱, 陈汉平, 晏蓉,等. 热解温度对污泥热解半焦产率与特性影响的研究. 可再生能源, 2008, 26(5): 31-34 Shao Jingai, Chen Hanping, Yan Rong, et al. Research on the effect of temperature on the production and properties of char from sewage sludge pyrolysis. Renewable Energy Resources, 2008, 26(5): 31-34 (in Chinese)
[23]  Minori Uchimiya, Lynda H. Wartelle, K. Thomas Klasson, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 2011, 59(6): 2501-2510
[24]  Marco Keiluweit, Peter S. Nico, Mark G. Johnson, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol., 2010, 44(4): 1247-1253

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133