全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水热炭化餐厨垃圾制备纳米铁/炭复合材料

Keywords: 餐厨垃圾,水热炭化,纳米复合物,铁盐添加剂

Full-Text   Cite this paper   Add to My Lib

Abstract:

以餐厨垃圾中有机组分作为碳源,通过添加铁盐水热炭化制备铁/炭纳米复合材料。考察了不同铁盐(FeSO4,FeCl3,Fe(NO3)3)对餐厨垃圾水热炭化物的形貌,以及氮、磷元素的迁移转化的影响;并研究了负载铁的物理、化学性质。实验结果表明,铁盐在水热炭化过程中促进了餐厨垃圾转化生成多种纳米结构。铁的价态是影响复合物形貌的主要影响因素:三价铁离子对大分子有机物的水解和炭化过程有催化作用,从而促进壳核式结构的纳米线及微米球复合物的生成;而亚铁离子则导致可溶性有机物炭化形成空心纳米球结构。负载铁的化学形态主要受阴离子的影响:硝酸铁体系中铁主要以氢氧化物形式沉积、其他阴离子体系则以磷酸盐为主要形态负载。

References

[1]  Yu G.B., Sun B., Pei Y., et al. FexOy@C spheres as an excellent catalyst for fischer-tropsch synthesis. Journal of the American Chemical Society, 2010, 132(3):935-937
[2]  Ni Y.H., Jin L.N., Zhang L., et al. Honeycomb-like Ni@C composite nanostructures: Synthesis, properties and applications in the detection of glucose and the removal of heavy-metal ions. Journal of Materials Chemistry, 2010,20(31):6430-6436
[3]  Kang W.J., Li H.B., Yan Y., et al. Worm-like palladium/carbon core-shell nanocomposites: One-step hydrothermal reduction-carbonization synthesis and electrocatalytic activity. Journal of Physical Chemistry C, 2011,115(14):6250-6256
[4]  Gao M.R., Xu W.H., Luo L.B., et al. Coaxial metal nano-/microcables with isolating sheath: Synthetic methodology and their application as interconnects. Advanced Materials, 2010, 22(17):1977-1981
[5]  Zhao L., Fan L. Z., Zhou M.Q., et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Advanced Materials, 2010,22(45):5202-5206
[6]  Ren L.H., Nie Y.F., Liu J.G., et al. Impact of hydrothermal process on the nutrient ingredients of restaurant garbage. Journal of Environmental Sciences, 2006,18(5):1012-1019
[7]  Gandini A., Belgacem M.N. Furans in polymer chemistry. Progress in Polymer Science, 1997, 22(6):1203-1379
[8]  Zhao D.Y., Huang Y., Cai H.Q., et al. One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chemical Communications, 2008, (23):2641-2643
[9]  Berge N.D., Ro K.S., Mao J.D., et al. Hydrothermal carbonization of municipal waste streams. Environmental Science & Technology, 2011,45(13):5696-5703
[10]  Titirici M.M., Antonietti M., Thomas A. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chemistry of Materials, 2006,18(16):3808-3812
[11]  Libra J.A., Ro Kyoung S., Kammann Claudia,et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2011,2(1):71-106
[12]  White R.J., Antonietti M., Titirici M.M. Naturally inspired nitrogen doped porous carbon. Journal of Materials Chemistry, 2009, 19(45):8645-8650
[13]  洪楠,于宏兵,薛旭方,等.餐厨垃圾中典型组分的裂解液化特征研究.环境工程学报,2010,4(5):1161-1166 Hong N.,Yu H.B.,Xue X.F.,et al. Study on pyrolysis liquefaction characteristics of typical components of kitchen trash. Chinese Journal of Environmental Engineering,2010,4(5):1161-1166 (in Chinese)
[14]  刘振刚,张付申.高压热水液化厨余垃圾的可行性研究.环境工程学报,2008,2(12):1681-1684 Liu Z.G.,Zhang F.S. Liquefaction of kitchen waste by hot compressed water. Chinese Journal of Environmental Engineering,2008,2(12):1681-1684(in Chinese)
[15]  Omar F.N., Rahman N.A., Hafid H.S., et al. Separation and recovery of organic acids from fermented kitchen waste by an integrated process. African Journal of Biotechnology, 2009,8(21):5807-5813
[16]  Wang X.Q., Wang Q.H., Liu Y.Y., et al. Kinetics and thermodynamics of glucoamylase inhibition by lactate during fermentable sugar production from food waste. Journal of Chemical Technology and Biotechnology, 2010,85(5):687-692
[17]  Wu Q. F., Zhang F. S. Hydrothermal carbonization of typical components of kitchen garbage. In: Selected Proceedings of the Fifth International Conference on Waste Management and Technology. Beijing: Scientific Research Publishing Inc., 2010.188-192
[18]  Hu B., Wang K., Wu L.H., et al. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, 2010,22(7):813-828
[19]  Titirici M. M., Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chemical Society Reviews, 2010,39(1):103-116
[20]  Ayala P., Arenal R., Rummeli M., et al. The doping of carbon nanotubes with nitrogen and their potential applications. Carbon, 2010,48(3):575-586
[21]  Zhao L., Bacsik Z., Hedin N., et al. Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. Chemsuschem., 2010, 3(7):840-845
[22]  Zhao L., Baccile N., Gross S., et al. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. Carbon, 2010,48(13):3778-3787

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133