瞿建宏, 吴伟. 除草剂生产废水经微生物降解前后的毒理效应. 中国环境科学, 2002, 22(4): 297-300 Qu J.H., Wu W. Toxic effects of weedicide wastewater before and after biodegradation with the microorganisms. China Environmental Science, 2002, 22(4): 297-300 (in Chinese)
[2]
Gammon D. W., Aldous C. N., Carr W. C. J., et al. A risk assessment of atrazine use in California: Human health and ecological aspects. Pest Management Science, 2005, 61(4): 331-355
[3]
叶常明, 雷志芳, 弓爱君, 等. 阿特拉津生产废水排放对水稻危害的风险分析. 环境科学, 1999, 20(3): 82-84 Ye C. M., Lei Z. F., Gong A. J., et al. Analysis of atrazine production producing waste water risk to seedling stage rice. Environmental Science, 1999, 20(3): 82-84(in Chinese)
[4]
司友斌, 孟雪梅. 除草剂阿特拉津的环境行为及其生态修复研究进展.安徽农业大学学报, 2007, 34(3): 451-455 Si Y.B., Meng X.M. Advance in environmental fate and ecological remediation of the herbicide atrazine. Journal of Anhui Agriculture University, 2007, 34(3): 451-455(in Chinese)
[5]
Huang Y. F., Liu Z. Z., He Y., et al. Quantifying effects of primary parameters on adsorption-desorption of atrazine in soils. Journal of Soils and Sediments, 2013, 13(6): 82-93
[6]
王志刚, 张颖, 郭火生, 等.阿特拉津降解菌Acinetobacter sp. DNS32对无机氮源的响应. 微生物学通报, 2013, DOI: 10.13344/j.microbiol.china.130629 Wang Z., Zhang Y., Guo S., et al. Response of an atrazine-degrading bacterium strain Acinetobacter sp. DNS32 to inorganic nitrogen source. Microbiology China, 2013, DOI: 10.13344/j.microbiol.china.130629 (in Chinese)
[7]
Zhang Y., Wang Y., Wang Z. G., et al. Optimization of fermentation medium for the production of atrazine degrading strain Acinetobacter sp. DNS32 by statistical analysis system. Journal of Biomedicine and Biotechnology, 2012, doi: 10.1155/2012/623062
[8]
王洋, 王志刚, 王溪, 等. 响应面法和神经网络优化Acinetobacter sp.DNS32发酵基质. 环境工程学报, 2013, 7(2): 791-795 Wang Y., Wang Z., Wang X., et al. Optimization of fermentation medium for Acinetobacter sp.DNS32 by response surface methodology and artificial neural network. Chinese Journal of Enviromental Engineering, 2013, 7(2): 791-795 (in Chinese)
[9]
Zhang Y., Jiang Z., Cao B., et al. Metabolic ability and gene characteristics of Arthrobacter sp. Strain DNS10, the sole atrazine-degrading strain in a consortium isolated from black soil. International Biodeterioration and Biodegradation, 2011, 65(8): 1140-1144
[10]
?vre?s L., Forney L., Daae F L., et al. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 1997, 63(9): 3367-3373
[11]
Salles J. F., Veen J. A., Elsas J. D. Multivariate analysis of Burkholderia species in soil: Effect of crop and land use history. Applied and Environmental Microbiology, 2004, 70(7): 4012-4020
[12]
Kowalchuk G. A., Hol W. H. G., Van Veen J. A. Rhizosphere fungal communities are influenced by Senecio jacobaea pyrrolizidine alkaloid content and composition. Soil Biology and Biochemistry, 2006, 38(9): 2852-2859
[13]
Yu Z., Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 2004, 70(8): 4800-4806
[14]
Pastorelli R., Landi S., Trabelsi D., et al. Effects of soil management on structure and activity of denitrifying bacterial communities. Applied Soil Ecology, 2011, 49(5): 46-58
[15]
Gordi Z., Eshghi S. Application of natural kaolin supported sulfuric acid as an ecofriendly catalyst for the efficient synthesis of bis(indolyl)urethanes. Sythesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2012, 42(7): 905-908
[16]
王桂苓, 马友华, 江云, 等. 凹凸棒土在土壤改良和新型肥料开发上的应用. 磷肥与复肥, 2008, 23(3): 78-79 Wang G., Ma Y., Jiang Y., et al. Application of attapulgite in soil improvement and new type fertilizer development. Phosphate & Compound Fertilizer, 2008, 23(3): 78-79 (in Chinese)
[17]
Ahmad F., Hughes J. B. Reactivity of partially reduced arylhydroxylamine and nitrosoarene metabolites of 2, 4, 6-trinitrotoluene (TNT) toward biomass and humic acids. Environmental Science & Technology, 2002, 36(20): 4370-81
[18]
管凤贞, 邱宏端, 陈济琛, 等. 根瘤菌菌剂的研究与开发现状. 生态学杂志, 2012, 31(3): 755-759 Guan F., Qiu H., Chen J., et al. Rhizobium inoculants: Research progress and development status. Chinese Journal of Ecology, 2012, 31(3): 755-759 (in Chinese)
[19]
Hubálek Z. Protectants used in the cryopreservation of microorganisms. Cryobiology, 2003, 46(3): 205-229
[20]
Brice?o G., Jorquera M. A., Demanet R., et al. Effect of cow slurry amendment on atrazine dissipation and bacterial community structure in an agricultural Andisol. Science of the Total Environment, 2010, 408(4): 2833-2839
[21]
Laws S. C., Ferrell J. M., Storker T. E. The effects of atrazine on female wistar rats: An evaluation of the protocol for assessing pubertal development and thyroid function. Toxicology Science, 2000, 58(2): 366-376
[22]
Swain J., Lessey A., Mirczuk S., et al. Effects of the endocrine disrupting herbicide, Atrazine, on pituitary development, gene expression and signalling pathways in Zebrafish (Daniorerio) and mouse pituitary cell lines. Endocrine Abstracts, 2013, 31(7): 147
[23]
Umar A. F., Tahir F., Larkin M., et al. In-situ biostimulatory effect of selected organic wastes on bacterial atrazine biodegradation. Advances in Microbiology, 2012, 2: 587-592
[24]
Yergeau E., Sanschagrin S., Maynard C., et al. Microbial expression profiles in the rhizosphere of willows depend on soil contamination. The ISME Journal, 2013, 8(2): 344-358
[25]
Siripattanakul S., Wirojanagud W., McEvoy J., et al. Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization. Journal of Applied Microbiology, 2009, 106(3): 986-992
[26]
Khan J. A., He X. X., Khan H. M., et al. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O82-/Fe2+ and UV/HSO5-/Fe2+ processes: A comparative study. Chemical Engineering Journal, 2013, 218: 376-383
[27]
Mandelbaum R. T., Allan D. L., WackettL P. Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Applied Environmental Microbiology, 1995, 61(4): 1451-1457
[28]
Zhang Y., Meng D. F., Wang Z. G., et al. Oxidative stress response in two representative bacteria exposed to atrazine. FEMS Microbiology Letters, 2012, 334 (2): 95-101
[29]
Zhang Y., Meng D. F., Wang Z. G., et al. Oxidative stress response in atrazine-degrading bacteria exposed to atrazine. Journal of Hazardous Materials, 2012, 229-230: 434-438
[30]
Moreno J. L., Aliaga A., Navarro S., et al. Effects of atrazine on microbial activity in semiarid soil. Applied Soil Ecology, 2007, 35(1): 120-127
[31]
Ahmad F., Hughes J. B. Reactivity of partially reduced arylhydroxylamine and nitrosoarene metabolites of 2, 4, 6-trinitrotoluene (TNT) toward biomass and humic acids. Environmental Science & Technology, 2002, 36(20): 4370-4381
[32]
Chan C. Y., Tao S., Dawson R., et al. Treatment of atrazine by integrating photocatalytic and biological processes. Environmental Pollution, 2004, 131(1): 45-54
[33]
Mecozzi R., Palma L. D., Merli C. Experimental in situ chemical peroxidation of atrazine in contaminated soil. Chemosphere, 2006, 62(9): 1481-1489
[34]
高燕飞, 徐力克, 刘豪, 等. UV-H2O2联用工艺去除水中阿特拉津的研究. 四川环境, 2010, 29(4): 5-8 Gao Y., Xu L., Liu H., et al. Study on removal of atrazine from water using UV-H2O2 combination process. Sichuan Environment, 2010, 29(4): 5-8(in Chinese)
[35]
Chen H. L., Bramanti E., Longo I., et al. Oxidative decomposition of atrazine in water in the presence of hydrogen peroxide using an innovative microwave photochemical reactor. Journal of Hazardous Materials, 2011, 186(2-3): 1808-1815
[36]
Gao Y. Z., Li Q. L., Ling W. T., et al. Arbuscularmycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. Journal of Hazardous Materials, 2011, 185(2-3): 703-709
[37]
Seybold C. A., Mersie W., McNamee C. Anaerobic degradation of atrazine and metolachlor and metabolite formation in wetland soil and water microcosms. Journal of Environmental Quality, 2001, 30(3): 1271-1277
[38]
郭火生, 王志刚, 孟冬芳, 等. 阿特拉津降解菌株DNS32的降解特性及分类鉴定与降解途径研究. 微生物学通报, 2012, 39(9): 1234-1241 Guo H., Wang Z., Meng D., et al. Degradation characteristics and identification and the degradation pathway of the atrazine-degrading strain DNS32. Microbiology China, 2012, 39(9): 1234-1241 (in Chinese)
[39]
Khavazi K., Rejali F., Seguin P., et al. Effect of carrier, sterilization method and incubation on survival of Bradyrhizobium japoaicum in soybean (Glycine mac L.) inoculations. Enzyme and Microbial Technology, 2007, 41(1): 780-784
[40]
赵红杰. 3株放线菌组合菌剂对西瓜枯萎病的防治. 杨凌:西北农林科技大学硕士学位论文, 2010. 23-25 Zhao H. Control effect of combining bio-control strains against Fusarium oxysporium F. sp. Niveum. Yangling: Master Dissertation of Northwest Agricultural and Forest University, 2010. 23-25 (in Chinese)
[41]
Roume H., Muller E. E., Cordes T., et al. A biomolecular isolation framework for eco-systems biology. The ISME Journal, 2013, 7: 110-121
[42]
Brussaard L., Ruiter P. C., Brown G. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment, 2007, 121(3): 233-244
[43]
林先贵, 陈瑞蕊, 胡君利. 土壤微生物资源管理、应用技术与学科展望. 生态学报, 2010, 30(24): 7029-7037 Lin X., Chen R., Hu J. The management and application of soil microbial resources and the perspectives of soil microbiology. Acta Ecologica Sinica, 2010, 30(24): 7029-7037 (in Chinese)
[44]
Hill T. C. J., Walsh K. A., Harris J. A., et al. Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiology Ecology, 2003, 43(1): 1-11
[45]
Fierer N., Jackson R. B. The diversity and biogeography of soil bacterial communities. PNAS, 2006, 103(3): 626-631
[46]
Singh B. K., Quince C., Catriona A., et al. Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environmental Microbiology, 2014, DOI: 10.1111/1462-2920.12353