全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于海水和盐田水的正渗透驱动液

Keywords: 正渗透,驱动液,海水,盐田水,膜污染

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用海水和盐田水作为驱动液,研究正渗透过程中的通量变化和膜污染特征,探索其作为驱动液的可行性。结果表明,海水和盐田水含有大量的盐离子,具有高的渗透压,海水、2#、5#和9#盐田水与0.42、0.8、2.2和4.2mol/L的氯化钠具有同样的通量行为。随海水和盐田水浓度增加,通量增加,同时污染也越严重。扫描电子显微镜观察和荧光光谱分析发现,盐田水中的硅酸盐和有机物会沉积在膜表面,引起比较严重的膜污染,尤其是高浓度的盐田水。海水和盐田水作为正渗透过程中的驱动液需要进行一定的预处理。

References

[1]  Lee S., Choi Y. J., Choi J. S., et al. Toward a combined system of forward osmosis and reverse osmosis for seawater desalination. Desalination,2009,247(1-3):239-246
[2]  McCutcheon J. R., Garcia-Castello E. M. Dewatering press liquor derived from orange production by forward osmosis. Journal of Membrane Science,2011,372(1-2):97-101
[3]  She Q., Jin X., Tang C. Y. Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion. Journal of Membrane Science,2012,401-402:262-273
[4]  Wang H. T., Li D., Zhang X. Y., et al. Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chemical Communications,2011,47(6):1710-1712
[5]  Li D., Zhang X., Simon G. P., et al. Forward osmosis desalination using polymer hydrogels as a draw agent: Influence of draw agent, feed solution and membrane on process performance. Water Research,2013,47(1):209-215
[6]  Tang C. Y. Y., She Q. H., Lay W. C. L., et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. Journal of Membrane Science,2010,354(1-2):123-133
[7]  国家环境保护总局. 水和废水监测分析方法(第4版). 北京:中国环境科学出版社, 2002
[8]  GB17378.4-2007. 海洋监测规范-第4部分:海水分析
[9]  Ng H. Y., Tan C. H. Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations. Journal of Membrane Science,2008, 324(1-2):209-219
[10]  Elimelech M., McCutcheon J. R. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. Journal of Membrane Science,2006,284(1-2): 237-247
[11]  Yangali-Quintanilla V., Li Z. Y., Valladares R., et al. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination,2011,280(1-3): 160-166
[12]  HTI. HTI\'S SEAWATER DRIVE OsMBR. http://wwwhtiwatercom/assets/pdf/whitepapers/hti-whitepaper-SeawaterMBRWhitePaper-11072011pdf,2011
[13]  Zhao S., Zou L., Tang C. Y., et al. Recent developments in forward osmosis: Opportunities and challenges. Journal of Membrane Science,2012,396:1-21
[14]  Cath T. Y., Gormly S., Beaudry E. G., et al. Membrane contactor processes for wastewater reclamation in space. Part I. Direct osmotic concentration as pretreatment for reverse osmosis. Journal of Membrane Science,2005,257(1-2):85-98
[15]  Achilli A., Cath T. Y., Childress A. E. Selection of inorganic-based draw solutions for forward osmosis applications. Journal of Membrane Science,2010,364(1-2):233-241
[16]  Su J., Chung T.S., Helmer B. J., et al. Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using Sucrose as draw solute. Journal of Membrane Science,2012,396:92-100
[17]  Kim T.W., Kim Y., Yun C., et al. Systematic approach for draw solute selection and optimal system design for forward osmosis desalination. Desalination,2012,284:253-260
[18]  Bowden K. S., Achilli A., Childress A. E. Organic ionic salt draw solutions for osmotic membrane bioreactors. Bioresource Technology,2012,122:207-216
[19]  Stone M. L., Wilson A. D., Harrup M. K.,et al. An initial study of hexavalent phosphazene salts as draw solutes in forward osmosis. Desalination,2013,312:130-136
[20]  Ling M. M., Chung T.S. Novel dual-stage FO system for sustainable protein enrichment using nanoparticles as intermediate draw solutes. Journal of Membrane Science,2011,372(1-2):201-209
[21]  She Q., Wong Y. K. W., Zhao S., et al. Organic fouling in pressure retarded osmosis: Experiments, mechanisms and implications. Journal of Membrane Science,2013,428:181-189
[22]  Valladares Linares R., Yangali-Quintanilla V., Li Z., et al. NOM and TEP fouling of a forward osmosis (FO) membrane: Foulant identification and cleaning. Journal of Membrane Science, 2012,421-422: 217-224
[23]  Li Z.Y., Yangali-Quintanilla V., Valladares-Linares R., et al. Flux patterns and membrane fouling propensity during desalination of seawater by forward osmosis. Water Research,2012,46(1):195-204
[24]  Mi B., Elimelech M. Silica scaling and scaling reversibility in forward osmosis. Desalination,2013,312:75-81
[25]  ASTM. Standard Practice for Calculation of Supersaturation of Barium Sulfate, Strontium Sulfate, and Calcium Sulfate Dihydrate (Gypsum) in Brackish Water, Seawater, and Brines,2008
[26]  Ogawa H., Tanoue E. Dissolved organic matter in oceanic waters. Journal of Oceanography,2003,59(2):129-147
[27]  Hong S. K., Elimelech M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. Journal of Membrane Science,1997,132(2):159-181
[28]  Mi B., Elimelech M. Chemical and physical aspects of organic fouling of forward osmosis membranes. Journal of Membrane Science,2008,320(1-2):292-302
[29]  Ning R. Y. Discussion of silica speciation, fouling, control and maximum reduction. Desalination,2003,151(1):67-73

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133