全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

最小条件下直线度误差评定的不确定度研究

, PP. 169-171

Keywords: 直线度误差,评定,不确定度,最小条件

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对按最小条件评定直线度误差存在的不确定度问题,根据离散数据点测量的名义坐标和不确定度来计算最小条件下直线度误差的不确定度。假设测量数据点坐标服从均匀分布,基于最小条件的判定准则,讨论了参考直线的不确定性,并提出了处理方法。给出了直线度误差不确定度传递的公式和计算方法,讨论了用MonteCarlo随机模拟方法评定直线度误差,并用实例进行了分析,同时对测量点不服从均匀分布的情况进行了讨论。

References

[1]  王伯平,孙大刚,孔令德,等.基于遗传算法的直线度误差的测量[J].计量学报,2004,25(1):16~18.
[2]  Huang Jyunping.An efficient approach for solving the straightness and the flatness problems at large number of data points[J].Computer-Aided Design,2003,35(1):15~25.
[3]  Hong L J,Shultes B C,Anand S.Robust evaluation of flatness and straightness tolerance using simulated annealing[J].Transactions of NAMRI/SME,2001,29:553 ~ 560.
[4]  Cui Changcai,Che Rensheng,Huang Qingcheng,et al.Genetic algorithm-based evaluation of spatial straightness error[J].Journal of Harbin Institute of Technology,2003,10(4):418~421.
[5]  Zhu L M,Ding H,Xiong Y L.Distance function based algorithm for spatial straightness evaluation[C]//Proceedings of the Institution of Mechanical Engineers.Journal of Engineering Manufacture,2003,217(B7):931~940.
[6]  赵俊伟.新一代GPS标准与计量体系的现状与发展方向的思考[J].河南理工大学学报,2005,24(2):121~125.
[7]  倪骁骅.形状误差测量结果不确定度的研究及应用[D].合肥:合肥工业大学,2002.
[8]  Ni Xiaohua,Deng Shanxi.Uncertainty of result of spatial straightness least-square evaluation[C]// Proceedings of the Second International Symposium on Instrumentation Science and Technology,Jinan,China,2002,3:129~133.
[9]  Wang Jinxing,Jiang Xiangqian,Ma Limin,et al.Uncertainty of spatial straightness in 3D measurement[C]// 7th International Symposium on Measurement Technology and Intelligent Instruments.Journal of Physics:Conference Series 13,2005:220~ 223.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133