全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SVM-DS多特征融合的杂草识别

DOI: 10.6041/j.issn.1000-1298.2013.02.034, PP. 182-187

Keywords: 杂草识别,支持向量机,DS证据理论,特征提取,多特征融合

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决单一特征识别杂草的低准确率和低稳定性,提出一种支持向量机(SVM)和DS(Shafer-Dempster)证据理论相结合的多特征融合杂草识别方法。在对田间植物图像处理的基础上,提取植物叶片形状、纹理及分形维数3类特征,分别以3类单特征的SVM分类结果作为独立证据构造基本概率指派(BPA),引入基于矩阵分析的DS融合算法简化决策级融合算法复杂度,根据融合结果及分类判决门限给出最终的识别结果。实验结果表明,多特征决策融合识别方法正确识别率达到96.11%,与单特征识别相比有更好的稳定性和更高的识别率。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133