New series of oxovanadium (IV) complexes isolated from 2,4,6-tris-(2-pyridyl)-1,3,5-triazine (L1) are incorporated and portrayed using spectroscopic (IR, UV-Vis, ESR, mass spectrometric), magnetic moment, thermal and cyclic voltammetry measurements. The results demonstrate that L1 acts in various styles of chelation with [V3O3(L1)(SO4)3(EtOH)1/2(H2O)3/2] 1), [VO(L1)(2,4-pentadionate)]·Cl·4HCl 2), [V2O2(L1)(SO4)2(EtOH)5/2] 3), [V2O2(L1)(SO4)2(EtOH)3/2(H2O)1/2] 4), [VO(L1)SO4 (H2O)3/2]·2.5H2O 5) and [V2O2(L1)(SO4)2(H2O)]·H2O 6). The values of magnetic moments and spectral studies suggest a square-pyramidal geometry around the V (IV) ion for all complexes. The molar conductance values suggest that the complexes are non-electrolyte, except the [VO(L1) (2,4-pentadionate)] Cl·4HCl. Molecular modeling calculates the bond length, bond angle, chemical reactivity, energy components (Kcal/mol) and binding energy (Kcal/mol) for the isolated complexes. The in vitro antibacterial studies of these complexes screened against pathogenic bacteria prove them as growth inhibiting agents. Antitumor activity is carried out in vitro on human mammary gland (breast) MCF-7 and cervical cancer cell-HeLa has shown that [VO(L1)SO4(H2O)3/2]·2.5 H2O and [VO(L1)(2,4-pentadionate)] Cl·4HCl complexes display the highest powerful activity between all of the investigated complexes.
References
[1]
Tsiani, E. and Fantus, I.G. (1997) Vanadium Compounds Biological Actions and Potential as Pharmacological Agents. Trends in Endocrinology & Metabolism, 8, 51-58. http://dx.doi.org/10.1016/S1043-2760(96)00262-7
[2]
Goldwaser, I., Gefel, D., Gershonov, E., Fridkin, M. and Shechter, Y. (2000) Insulin-Like Efects of Vanadium: Basic and Clinical Implications. Journal of Inorganic Biochemistry, 80, 21-25.
http://dx.doi.org/10.1016/S0162-0134(00)00035-0
Rizk, S.L. and Sky-Peck, H.H. (1984) Comparison between Concentrations of Trace Elements in Normal and Neoplastic Human Breast Tissue. Cancer Research, 44, 5390-5394.
[5]
De Silva, C.R., Wang, R. and Zheng, Z. (2006) Highly Luminescent Eu (III) Complexes with 2,4,6-Tri(2-pyridyl)-1,3,5-triazine Ligand: Synthesis, Structural Characterization, and Photo-Luminescence Studies. Polyhedron, 25, 3449-3455. http://dx.doi.org/10.1016/j.poly.2006.06.032
[6]
Paul, P. (2002) Ruthenium, Osmium and Rhodium Complexes of Polypyridyl Ligands: Metal-Promoted Activities, Stereochemical Aspects and Electrochemical Properties. Proceedings of the Indian Academy of Sciences, 114, 269-276. http://dx.doi.org/10.1007/BF02703819
[7]
Pruchnik, F.P., Jakimowicz, P., Ciunik, Z., Czerwinska, J.Z., Opolski, A., Wietrzyk, J. and Wojdat, E. (2002) Rhodium (III) Complexes with Polypyridyls and Pyrazole and Their Antitumor Activity. Inorganica Chimica Acta, 334, 59-66.
http://dx.doi.org/10.1016/S0020-1693(02)00776-4
[8]
Najafpour, M.M., Holynska, M., Amini, M., Kazemi, S.H., Lis, T. and Bagherzadeh, M. (2010) Two New Silver(I) Complexes with 2,4,6-Tris(2-pyridyl)-1,3,5-triazine (Tptz): Preparation, Characterization, Crystal Structure and Alcohol Oxidation Activity in the Presence of Oxone. Polyhedron, 29, 2837-2843.
http://dx.doi.org/10.1016/j.poly.2010.07.005
[9]
Maghami, M., Farzaneh, F., Simpson, J. and Moazeni, A. (2014) Synthesis, Characterization and Crystal Structure of a Cobalt(II) Coordination Polymer with 2,4,6-Tris(2-pyridyl)-1,3,5-triazine and Its Use as an Epoxidation Catalyst. Polyhedron, 73, 22-29. http://dx.doi.org/10.1016/j.poly.2014.02.012
[10]
Chen, D., Milacic, V., Frezza, M. and Dou, Q.P. (2009) Metal Complexes, Their Cellular Targets and Potential for Cancer Therapy. Current Pharmaceutical Design, 15, 777-791. http://dx.doi.org/10.2174/138161209787582183
[11]
Hambley, T.W. and Hait, W.N. (2009) Is Anticancer Drug Development Heading in the Right Direction. Cancer Research, 69, 1259-1261. http://dx.doi.org/10.1158/0008-5472.CAN-08-3786
[12]
Leung, C.H., Zhong, H.J., Chan, D.S.H. and Ma, D.L. (2013) Bioactive Iridium and Rhodium Complexes as Therapeutic Agents. Coordination Chemistry Reviews, 257, 1764-1776. http://dx.doi.org/10.1016/j.ccr.2013.01.034
[13]
Ma, D.L., He, H.Z., Leung, K.H., Chan, D.S. and Leung, C.H. (2013) Bioactive Luminescent Transition-Metal Complexes for Biomedical Applications. Angewandte Chemie International Edition, 52, 7666-7682.
http://dx.doi.org/10.1002/anie.201208414
[14]
Vogel, A.I. (1994) A Text Book of Quantitative Inorganic Chemistry. Longmans, London.
[15]
Bain, G.A. and Berry, J.F. (2008) Diamagnetic Corrections and Pascal’s Constants. Journal of Chemical Education, 85, 532-536. http://dx.doi.org/10.1021/ed085p532
[16]
Mosmann, T. (1983) Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. Journal of Immunological Methods, 65, 55-63. http://dx.doi.org/10.1016/0022-1759(83)90303-4
[17]
Gangadevi, V. and Muthumary, J. (2007) Preliminary Studies on Cytotoxic Effect of Fungal Taxol on Cancer Cell Lines. African Journal of Biotechnology, 6, 1382-1386.
[18]
Wilson, A.P. (2000) Cytotoxicity and Viability Assays in Animal Cell Culture: A Practical Approach. 3rd Edition, Oxford University Press, Oxford.
[19]
Denizot, F. (1986) Lang R. Rapid Colorimetric Assay for Cell Growth and Survival Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability. Journal of Immunological Methods, 89, 271-277.
http://dx.doi.org/10.1016/0022-1759(86)90368-6
[20]
Mauceri, H.J., Hanna, N.N., Beckett, M.A., Gorski, D.H., Staba, M.J., Stellato, K.A., Bigelow, K., Heimann, R., Gately, S., Dhanabal, M., Soff, G.A., Sukhatme, V.P., Kufe, D.W. and Weichselbaum, R.R. (1998) Combined Effects of Angiostatin and Ionizing Radiation in Anti-Tumor Therapy. Nature, 394, 287-291. http://dx.doi.org/10.1038/28412
[21]
Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G.B., Padalko, E., Neyts, J. and Clerq, E.D. (2003) Spiro[pyrrolidine-2,20-adamantanes]: Synthesis, Anti-Influenza Virus Activity and Conformational Properties. Bioorganic & Medicinal Chemistry Letters, 13, 1699-1703. http://dx.doi.org/10.1016/S0960-894X(03)00231-2
[22]
Geary, W.J. (1971) The Use of Conductivity Measurements in Organic Solvents for the Characterisation of Coordination Compounds. Coordination Chemistry Reviews, 7, 81-122. http://dx.doi.org/10.1016/S0010-8545(00)80009-0
[23]
Nakamoto, K. (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley and Sons, Inc., 58B.
[24]
Abu-Hussen, A.A.A. and Emara, A.A.A. (2004) Metal Complexes of Some Thiocarbohydrazone Ligands: Synthesis and Structure. Journal of Coordination Chemistry, 57, 973-987. http://dx.doi.org/10.1080/00958970412331272412
[25]
Selbin, J. (1964) Metal Oxocations. Journal of Chemical Education, 41, 86. http://dx.doi.org/10.1021/ed041p86
[26]
Ferraro, J.R. (1966) Low Frequency Vibrations of Inorganic and Coordination Compounds. Plenum Press, New York.
[27]
Beynon, J.H. (1960) Mass Spectrometry and its Applications to Organic Chemistry. Elsevier, Amsterdam.
[28]
Zhanglin, Y., Forissier, M., Vedrine, J.C. and Volta, J.C. (1994) On the Mechanism of n-Butane Oxidation to Maleic Anhydride on VPO Catalysts. II. Study of the Evolution of the VPO Catalysts under n-Butane, Butadiene and Furan Oxidation Conditions. Journal of Catalysis, 145, 267-275. http://dx.doi.org/10.1006/jcat.1994.1034
[29]
Bencini, A. and Gattechi, D. (1990) EPR of Exchange Coupled System. Springer-Verlach, Berline.
[30]
Abou-Hussen, A.A., El-Metwally, N.M., Saad, E.M. and El-Asmy, A.A. (2005) Spectral, Magnetic, Thermal and Electrochemical Studies on Phthaloyl Bis-(Thiosemicarbazide) Complexes. Journal of Coordination Chemistry, 58, 1735-1749. http://dx.doi.org/10.1080/00958970500262270
[31]
Job, P. (1928) Formation and Stability of Inorganic Complexes in Solution. Annales de Chimie (France), 9, 113-203.
[32]
Seleem, H.S., El-Inany, G.A., Mousa, M. and Hanafy, F.I. (2009) Spectroscopic Studies on 2-[2-(4-Methylquinolin-2-yl) Hydrazono]-1,2-Diphenylethanone Molecule and Its Metal Complexes. Spectrochimica Acta, 74, 869-874.
http://dx.doi.org/10.1016/j.saa.2009.08.024
Khalil, S.M.E. (2003) Synthesis, Spectroscopic and Magnetic Studies on Metal Complexes of 5-Methyl-3-(2-Hydroxyphenyl)Pyrazole. Journal of Coordination Chemistry, 56, 1013-1024. http://dx.doi.org/10.1080/0095897031000135289
[35]
Khalil, S.M.E. and El-Shafiy, H.F.O. (2000) Vo(IV), Fe(III), Co(II) and Cd(II) Complexes of Asymmetric Schiff Base Ligands (N2O3). Synthesis and Spectroscopic Studies. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 30, 1817-1833. http://dx.doi.org/10.1080/00945710009351871
[36]
El-Metwally, N.M., El-Shazly, R.M., Gabr, I.M. and El-Asmy, A.A. (2005) Physical and Spectroscopic Studies on Novel Vanadyl Complexes of Some Substituted Thiosemi-Carbazides. Spectrochimica Acta (A), 61, 1113-1119.
http://dx.doi.org/10.1016/j.saa.2004.06.027
[37]
Abou-Hussein, A.A. and Linert, W. (2015) Synthesis, Spectroscopic Studies and Inhibitory Activity against Bactria and Fungi of Acyclic and Macrocyclic Transition Metal Complexes Containing a Triamine Coumarine Schiff-Base Ligand. Spectrochimica Acta, 141, 223-232. http://dx.doi.org/10.1016/j.saa.2015.01.063
[38]
Delley, B. (2000) From Molecules to Solids with the DMol3Approach. The Journal of Chemical Physics, 113, 7756-7764. http://dx.doi.org/10.1063/1.1316015 http://dx.doi.org/10.1002/(SICI)1097-461X(1998)68:2<135::AID-QUA6>3.0.CO;2-W
[39]
(2009) Materials Studio v 5.0, Accelrys Software Inc.
[40]
Hehre, W.J., Radom, L., Schleyer, P.V.R. and Pople, J.A. (1986) AB Initio Molecular Orbital Theory. John Wiley, New York.
[41]
Yousef, T.A., Abu El-Reash, G.M. and El Morshedy, R.M. (2012) Quantum Chemical Calculations, Experimental Investigations and DNA Studies on (E)-2-((3-Hydroxy-naphthalen-2-yl)methylene)-N-(pyridin-2-yl) Hydrazinecarbothioamide and Its Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II) Complexes. Polyhedron, 45, 71-85.
http://dx.doi.org/10.1016/j.poly.2012.07.041
[42]
Linert, W. and Taha, A. (1994) Coordination of Solvent Molecules to Square-Planar Mixed-Ligand Nickel (II) Complexes—A Thermodynamic and Quantum-Mechanical Study. Journal of the Chemical Society, Dalton Transactions, 1994, 1091-1095. http://dx.doi.org/10.1039/dt9940001091
[43]
Govindarajan, M., Periandy, S. and Carthigayen, K. (2012) FT-IR and FT-Raman Spectra, Thermodynamical Behavior, HOMO and LUMO, UV, NLO Properties, Computed Frequency Estimation Analysis and Electronic Structure Calculations on a Bromotoluene. Spectrochimica Acta, 97, 411-422. http://dx.doi.org/10.1016/j.saa.2012.06.028
[44]
Abu El-Reash, G.M., El-Gammal, O.A., Ghazy, S.E. and Radwan, A.H. (2013) Characterization and Biological Studies on Co(II), Ni(II) and Cu(II) Complexes of Carbohydrazones Ending by Pyridyl Ring. Spectrochimica Acta, 104, 26-34.
http://dx.doi.org/10.1016/j.saa.2012.11.008
[45]
Pearson, R.G. (1989) Absolute Electronegativity and Hardness: Applications to Organic Chemistry. Journal of Organic Chemistry, 54, 1423-1430. http://dx.doi.org/10.1021/jo00267a034
[46]
Padmanabhan, J., Parthasarathi, R., Subramanian, V. and Chattaraj, P. (2007) Electrophilicity-Based Charge-Transfer Descriptor. The Journal of Physical Chemistry, 111, 1358-1361. http://dx.doi.org/10.1021/jp0649549
[47]
Parthasarathi, R., Padmanabhan, J., Sarkar, U., Maiti, B., Subramanian, V. and Chattaraj, P.K. (2003) Toxicity Analysis of Benzidine through Chemical Reactivity and Selectivity Profiles: A DFT Approach. Journal of Molecular Structure, 2, 798-813.
[48]
Scrocco, E. and Tomasi, J. (1978) Electronic Molecular Structure, Advances in Quantum Chemistry. Academic Press, Cambridge, 115-193.
[49]
Luque, F.J., López, J.M. and Orozco, M. (2000) Perspective on “Electrostatic Interactions of a Solute with a Continuum. A Direct Utilization of AB initio Molecular Potentials for the Prevision of Solvent Effects”. Theoretical Chemistry Accounts, 103, 343-345. http://dx.doi.org/10.1007/s002149900013
[50]
Okulik, N and Ubert, A.H.J. (2005) Theoretical Analysis of the Reactive Sites of Non-Steroidal Anti-Inflammatory Drugs. J. Molecular. Design, 4, 17-30.
[51]
Politzer, P., Laurence, P.R. and Jayasuriya, K. (1985) Molecular Electrostatic Potentials: An Effective Tool for the Elucidation of Biochemical Phenomena. Environmental Health Perspectives, 61, 191-200.
http://dx.doi.org/10.1289/ehp.8561191
[52]
Scrocco, E. and Tomasi, J. (1973) The Electrostatic Molecular Potential as a Tool for the Interpretation of Molecular Properties. New Concepts II, Springer, 95-170. http://dx.doi.org/10.1007/3-540-06399-4_6
[53]
Aljahdali, M. and El-Sherif, A.A. (2013) Synthesis, Characterization, Molecular Modeling and Biological Activity of Mixed Ligand Complexes of Cu(II), Ni(II) and Co(II) Based on 1,10-Phenanthroline and Novel Thiosemicarbazone. Inorganica Chimica Acta, 407, 58-68. http://dx.doi.org/10.1016/j.ica.2013.06.040
[54]
EL-Saied, F.A., Shakdofa, M.M.E. and Al-Hakimi, A.N. (2011) Synthesis, Characterization and Biological Studies of New Mn(II), Ni(II), Co(II), Cu(II) and Zn(II) of 2-(Benzothiazol-2-yl)-N’-(2,5-dihydroxybenzylidene)acetohydrazide. Journal of the Korean Chemical Society, 55, 19-27. http://dx.doi.org/10.5012/jkcs.2011.55.1.019
[55]
El-Tabl, A.S., El-Saied, F.A. and Al-Hakimi, A.N. (2008) Spectroscopic Characterization and Biological Activity of Metal Complexes with an ONO Trifunctionalized Hydrazone Ligand. Journal of Coordination Chemistry, 61, 2380-2401. http://dx.doi.org/10.1080/00958970801914041
[56]
Israel, Y. and Meites, L. (1976) Vanadium. In: Bard, A.J., Ed., Encyclopedia of Electrochemistry of the Elements, Vol. VII, Chap. VII-2, Marcel Dekker Inc., New York, 336-378.