Sol-Gel Synthesis Using Novel Chelating Agent and Electrochemical Characterization of Binary Doped LiMn2O4 Spinel as Cathode Material for Lithium Rechargeable Batteries
LiMn2O4 and LiCuxCryMn2-x-yO4 (x = 0.50; y = 0.05 - 0.50) powders have been synthesized via sol-gel method for the first time using Myristic acid as chelating agent. The synthesized samples have been taken to physical and electrochemical characterization such as thermo gravimetric analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and electrochemical characterization viz., electrochemical galvanostatic cycling studies, electrochemical impedance spectroscopy (EIS) and differential capacity curves (dQ/dE). XRD patterns of LiMn2O4 and LiCuxCryMn2-x-yO4 confirm high degree of crystallinity with good phase purity. FESEM image of undoped pristine spinel lucidly depicts cauliflower morphology with good agglomerated particle size of 50 nm while 0.5-Cu doped samples depict the pebbles morphology. TEM images of the spinel LiMn2O4 and LiCu0.5Cr0.05Mn1.45O4 authenticate that all the synthesized particles via sol-gel method are nano-sized (100 nm) with spherical surface and cloudy particles morphology. The LiMn2O4 samples calcined at 850℃ deliver the high discharge capacity of 130 mA·h/g with cathodic efficiency of 88% corresponds to 94% columbic efficiency in the first cycle. Among all four compositions studied, LiCu0.5Cr0.05Mn1.45O4 delivers 124 mA·h/g during the first cycle and shows stable performance with a low capacity fade of 1.1 mA·h/g cycle over the investigated 10 cycles.
References
[1]
Tarascon, J.M., McKinnon, W.R., Coowar, F., Bowner, T.N., Amatucci, G. and Guyomard, D. (1994) Synthesis Conditions and Oxygen Stoichiometry Effects on Lithium Insertion into the Spinel LiMn2O4. Journal of the Electrochemical Society, 141, 1421-1431. http://dx.doi.org/10.1149/1.2054941
[2]
Gummow, R.J., de Kock, A. and Thackeray, M.M. (1994) Improved Capacity Retention in Rechargeable 4 V Lithium/Lithium-Manganese Oxide (Spinel) Cells. Solid State Ionics, 69, 59-67.
http://dx.doi.org/10.1016/0167-2738(94)90450-2
[3]
Thackeray, M.M., de Kock, A., Rossouw, M.H., Liles, D., Bittihn, R. and Hoge, D. (1992) Spinel Electrodes from the Li-Mn-O System for Rechargeable Lithium Battery Applications. Journal of the Electrochemical Society, 139, 363-366. http://dx.doi.org/10.1149/1.2069222
[4]
Xia, Y., Zhou, Y. and Yoshio, M. (1997) Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells. Journal of the Electrochemical Society, 144, 2593-2600. http://dx.doi.org/10.1149/1.1837870
[5]
Pistoia, G., Antonini, A., Rosati, R. and Zane, D. (1996) Storage Characteristics of Cathodes for Li-Ion Batteries. Electrochimca Acta, 41, 2683-2689. http://dx.doi.org/10.1016/0013-4686(96)00122-3
[6]
Jang, D.H., Shin, J.Y. and Oh, S.M. (1996) Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/LixMn2O4 Cells. Journal of the Electrochemical Society, 143, 2204-2211. http://dx.doi.org/10.1149/1.1836981
[7]
Yamada, A. (1996) Lattice Instability in Li (LixMn2-x)O4. Journal of Solid State Chemistry, 122, 160-165.
http://dx.doi.org/10.1006/jssc.1996.0097
[8]
Ohuzuku, T., Takeda, S. and Wakihara, M. (1999) Olivine Coated Spinel: 5 V System for High Energy Lithium Batteries. Journal of Power Sources, 90, 81-82.
[9]
Song, D., Ikuta, H., Uchida, T. and Wakihara, M. (1999) The Spinel Phases LiAlyMn2-yO4 (y = 0, 1/12, 1/9, 1/6, 1/3) and Li (Al, M)1/6 Mn11/6O4 (M=Cr, Co) as the Cathode for Rechargeable Lithium Batteries. Solid State Ionics, 117, 151-156. http://dx.doi.org/10.1016/S0167-2738(98)00258-6
[10]
Iqbal, M.J. and Ahmad, Z. (2008) Electrical and Dielectric Properties of Lithium Manganate Nanomaterials Doped with Rare-Earth Elements. Journal of Power Sources, 179, 763-769. http://dx.doi.org/10.1016/j.jpowsour.2007.12.115
[11]
Lee, J.H., Hong, J.K., Jang, D.H., Sun, Y.K. and Oh, S.M. (2000) Degradation Mechanisms in Doped Spinels of LiM0.05Mn1.95O4 (M = Li, B, Al, Co, and Ni) for Li Secondary Batteries. Journal of Power Sources, 89, 7-14.
http://dx.doi.org/10.1016/S0378-7753(00)00375-X
[12]
Park, S.H., Park, K.S., Sun, Y.K. and Nahm, K.S. (2000) Synthesis and Characterization of a New Spinel, Li1.02Al0.25Mn1.75O3S0.03, Operating at Potentials between 4.3 and 2.4 V. Journal of Electrochemical Society, 147, 2116-2121. http://dx.doi.org/10.1149/1.1393494
[13]
Bach, S., Henry, M., Baffier, N. and Livage, J. (1990) Sol-Gel Synthesis of Manganese Oxide. Journal of Solid State Chemistry, 88, 325-333. http://dx.doi.org/10.1016/0022-4596(90)90228-P
[14]
Perreira-Ramos, J.P. (1995) Electrochemical Properties of Cathodic Materials Synthesized by Low-Temperature Techniques. Journal of Power Sources, 54, 120-126. http://dx.doi.org/10.1016/0378-7753(94)02051-4
[15]
Barboux, P., Tarascon, J.M. and Shokoohi, F.K. (1991) The Use of Acetates as Precursors for the Low Temperature Synthesis of LiMn2O4 and LiCoO2 Intercalation Compounds. Journal of Solid State Chemistry, 94, 185-196.
http://dx.doi.org/10.1016/0022-4596(91)90231-6
[16]
Liu, W., Farrington, G.C., Chaput, F. and Dunn, B.J. (1996) Synthesis and Electrochemical Studies of Spinel Phase LiMn2O4 Cathode Materials Prepared by the Pechini Process. Journal of Electrochemical Society, 143, 879-884.
http://dx.doi.org/10.1149/1.1836552
[17]
Thirunakaran, R., Kalaiselvi, N., Periasamy, P., RameshBabu, B., Renganathan, N.G. and Muniyandi, N. (2001) Significance of Mg Doped LiMn2O4 Spinels as Attractive 4 V Cathode Materials for Use in Lithium Batteries. Ionics, 7, 187-191. http://dx.doi.org/10.1007/BF02419227
[18]
Guo, S.H., Zhang, S.C., He, X.M., Pu, W.H., Jiang, C.Y. and Wan, C.R. (2008) Synthesis and Characterization of Sn-Doped LiMn2O4 Cathode Materials for Rechargeable Li-Ion Batteries. Journal of the Electrochemical Society, 155, A760-A763. http://dx.doi.org/10.1149/1.2965635
[19]
Thirunakaran, R., Sivashanmugam, A., Gopukumar, S., Dunnill, C.W. and Gregory, D.H. (2008) Electrochemical Behaviour of Nano-Sized Spinel LiMn2O4 and LiAlxMn2-xO4 (x = Al: 0.00 - 0.40) Synthesized via Fumaric Acid-Assisted Sol-Gel Synthesis for Use in Lithium Rechargeable Batteries. Journal of Physics Chemistry of Solids, 69, 2082-2090.
http://dx.doi.org/10.1016/j.jpcs.2008.03.009
[20]
Veluchamy, A., Ikuta, H. and Wakihara, M. (2001) Boron-Substituted Manganese Spinel Oxide Cathode for Lithium Ion Battery. Solid State Ionics, 143, 161-171. http://dx.doi.org/10.1016/S0167-2738(01)00856-6
[21]
Fey, G.T.K., Lu, C.Z. and Prem Kumar, T. (2003) Solid-State Synthesis and Electrochemical Characterization of LiMyCr0.5-yMn1.5O4 (M = Fe or Al; 0.0 < y < 0.4) Spinels. Materials Chemistry and Physics, 80, 309-318.
http://dx.doi.org/10.1016/S0254-0584(02)00522-9
[22]
Thirunakaran, R., Sivashanmugam, A., Gopukumar, S. and Rajalakshimi, R. (2009) Cerium and Zinc: Dual-Doped LiMn2O4 Spinels as Cathode Material for Use in Lithium Rechargeable Batteries. Journal of Power Sources, 187, 565-574. http://dx.doi.org/10.1016/j.jpowsour.2008.10.134
[23]
Thirunakaran, R., Kim, K.T., Kang, Y.M., Seo, C.Y. and Lee, J.Y. (2004) Adipic Acid Assisted Sol-Gel Route for Synthesis of LiCrxMn2-xO4 Cathode Material. Journal of Power Sources, 137, 100-104.
http://dx.doi.org/10.1016/j.jpowsour.2004.02.016
[24]
Thirunakaran, R., Kim, K.T., Kang, Y.M. and Lee, J.Y. (2005) Cr3+ Modified LiMn2O4 Spinel Intercalation Cathodes through Oxalic Acid Assisted Sol-Gel Method for Lithium Rechargeable Batteries. Materials Research Bulletin, 40, 177-186. http://dx.doi.org/10.1016/j.materresbull.2004.08.013
[25]
Thirunakaran, R., Sivashanmugam, A., Gopukumar, S., Dunnill, C.W. and Gregory, D.H. (2008) Studies on Chromium/Aluminium Doped Managanese Spinel as Cathode Materials for Lithium-Ion Batteries—A Novel Chelated Sol-Gel Synthesis. Journal of Materials Process & Technology, 208, 520-531.
http://dx.doi.org/10.1016/j.jmatprotec.2008.01.017
[26]
Thirunakaran, R., Sivashanmugam, A., Gopukumar, S., Dunnill, C.W. and Gregory, D.H. (2008) Phthalic Acid Assisted Nano-Sized Spinel LiMn2O4 and LiCrxMn2-xO4(x=0.00-0.40) via Sol-Gel Synthesis and Its Electrochemical Behaviour for Use in Li-Ion-Batteries. Materials Research Bulletin, 43, 2119-2129.
http://dx.doi.org/10.1016/j.materresbull.2007.09.021
[27]
Penga, C., Huanga, J., Guoa, Y., Lia, Q., Baia, H., Hea, Y., Sua, C. and Guao, J. (2015) Electrochemical Performance of Spinel LiAlxMn2-xO4 Prepared Rapidly by Glucose-Assisted Solid-State Combustion Synthesis. Vacuum, 120, 121-126. http://dx.doi.org/10.1016/j.vacuum.2015.07.001
[28]
Rajakumar, S., Thirunakaran, R., Sivashanmugam, A. and Gopukumar, S. (2010) Synthesis, Characterization, and Electrochemical Properties of LiCrxNiyMn2-x-yO4 Spinels as Cathode Material for 5 V Lithium Battery. Journal of Electrochemical Society, 157, A333-A339. http://dx.doi.org/10.1149/1.3283015
[29]
Julien, C., Mangani, I.R., Selladurai, S. and Massot, M. (2002) Synthesis, Structure and Electrochemistry of LiMn2-yCry/2Cuy/2O4 (0.0 ≤ y ≤ 0.5) Prepared by Wet Chemistry. Solid State Ionics, 4, 1031-1038.
http://dx.doi.org/10.1016/s1293-2558(02)01357-2
[30]
Lu, C.H., Lin, Y.L. and Wang, H.C. (2003) Chromium-Ion Doped Spinel Lithium Manganate Nanoparticles Derived from the Sol-Gel Process. Journal of Material Science Letters, 22, 615-618.
http://dx.doi.org/10.1023/A:1023358731547
[31]
Sun, Y.K, Oh, I.H. and Kim, K.Y. (1997) Synthesis of Spinel LiMn2O4 by the Sol-Gel Method for a Cathode-Active Material in Lithium Secondary Batteries. Industrial and Engineering Chemistry Research, 36, 4839-4846.
http://dx.doi.org/10.1021/ie970227b
[32]
Murali, K.R., Saravanan, T. and Jeyachandran, M. (2008) Synthesis and Characterization of Copper Substituted Lithium Manganate Spinels. Journal of Materials Science: Materials in Electronics, 19, 533-537.
http://dx.doi.org/10.1007/s10854-007-9376-4
[33]
Hernán, L., Morales, J., Sánchez, L. and Santos, J. (1999) Use of Li-M-Mn-O [M=Co, Cr, Ti] Spinels Prepared by a Sol-Gel Method as Cathodes in High-Voltage Lithium Batteries. Solid State Ionics, 118, 179-185.
http://dx.doi.org/10.1016/S0167-2738(98)00449-4
[34]
Bao, S.J., Liang, Y.Y., Zhou, W.J., He, B.L. and Li, H.H. (2006) Synthesis and Electrochemical Properties of LiAl0.1Mn1.9O4 by Microwave-Assisted Sol-Gel Method. Journal of Power Sources, 154, 239-245.
http://dx.doi.org/10.1016/j.jpowsour.2005.03.220