Objective: Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis (UC), are chronic and recurrent disorders of the gastrointestinal tract with unknown etiology. Considering the adverse effects and incomplete efficacy of currently administered drugs, it is crucial to explore new drugs with more desirable therapeutic profiles. As non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists have shown analgesic and anti-inflammatory properties in vitro and in vivo, this study aims to investigate the role of ketamine, a noncompetitive NMDA receptor antagonist, in acetic acid-induced rat colitis. Methods: Ketamine (10, 50 mg/kg), and dexamethasone (1 mg/kg) were given intraperitoneally 30 min before induction of colitis which was done by instillation of 2 mL of 4% acetic acid (vol/vol). At the 4th day of colitis induction, animals were sacrificed and distal colons were assessed macroscopically and microscopically. Furthermore, the mucosal contents of lipid peroxidation (LPO), reduced glutathione (GSH), nitric oxide (NO) and tumor necrosis factor-α (TNF-α) were assessed. Results: Ketamine (50 mg/kg) and dexamethasone significantly (p < 0.05) improved macroscopic and histologic scores, diminished colonic levels of MDA, NO and TNF-α and elevated GSH levels. Conclusion: Our data suggest that ketamine has valuable protective effects in acetic acid colitis and it may be a new therapy target in ulcerative colitis patients, possibly by regulating antioxidants and inflammatory mediators.
References
[1]
Nagib, M.M., Tadros, M.G., Elsayed, M.I. and Khalifa, A.E. (2013) Anti-Inflammatory and Antioxidant Activities of Olmesartan Midoxomil Ameliorates Experimental Colitis in Rats. Toxicology and Applied Pharmacology, 271, 106-113. http://dx.doi.org/10.1016/j.taap.2013.04.026
[2]
Sotnikova, R., Nosalova, V. and Navarova, J. (2013) Efficacy of Quercetin Derivatives in Prevention of Ulcerative Colitis in Rats. Interdisciplinary Toxicology, 6, 9-12. http://dx.doi.org/10.2478/intox-2013-0002
[3]
MacPherson, B.R. and Pfeiffer, C.J. (1978) Experimental Production of Diffuse Colitis in Rats. Digestion, 17, 135-150. http://dx.doi.org/10.1159/000198104
[4]
Noa, M., Mas, R., Carbaja, D. and Valdes, S. (2000) Effect of D-002 on Acetic Acid-Induced Colitis in Rats at Single and Repeated Doses. Pharmacological Research, 41, 391-395. http://dx.doi.org/10.1006/phrs.1999.0596
[5]
Nosal’ova, V., Zeman, M., Cerna, S., Navarova, J. and Zakalova, M. (2007) Protective Effect of Melatonin in Acetic Acid Induced Colitis in Rats. Journal of Pineal Research, 42, 364-370. http://dx.doi.org/10.1111/j.1600-079X.2007.00428.x
[6]
Keshavarzian, A., Haydek, J., Zabihi, R., Doria, M., D’Astice, M. and Sorensen, J.R.J. (1992) Agents Capable of Eliminating Reactive Oxygen Species: Catalase, WR-2721, Cu(II)2(3,5-DIPS)4 Decrease Experimental Colitis. Digestive Diseases and Sciences, 37, 1866-1873.
[7]
Baumaqart, D.C. and Sandbom, W.J. (2007) Inflammatory Bowel Disease: Clinical Aspects and Established and Evolving Therapies. Lancet, 369, 1641-1657. http://dx.doi.org/10.1016/S0140-6736(07)60751-X
[8]
Takenaka, I., Ogata, M., Koga, K., Matsumoto, T. and Shigematsu, A. (1994) Ketamine Suppresses Endotoxin-Induced Tumor Necrosis Factor Alpha Production in Mice. Anesthesiology, 80, 402-408. http://dx.doi.org/10.1097/00000542-199402000-00020
[9]
Taniguchi, T., Shbata, K. and Yamamoto, K. (2001) Ketamine Inhibits Endotoxin-Induced Shock in Rats. Anesthesiology, 95, 928-932. http://dx.doi.org/10.1097/00000542-200110000-00022
[10]
Kawasaki, T., Ogata, M., Kawasaki, C., Ogata, J., Inoue, Y. and Shgemastu, A. (1999) Ketamine Suppresses Proinflammatory Cytokine Production in Human Whole Blood in Vitro. Anesthesia & Analgesia, 89, 665-669.
[11]
Kawasaki, C., Kawasaki, T., Ogata, M., Nandate, K. and Shgemastu, A. (2001) Ketamine Isomers Suppress Superantigen-Induced Proinflammatory Cytokine Production in Human Whole Blood. Canadian Journal of Anesthesia, 48, 819-823. http://dx.doi.org/10.1007/BF03016701
[12]
Fabia, R., Willén, R., Ar’Rajab, A., Andersson, R., Ahrén, B. and Bengmark, S. (1992) Acetic Acid-Induced Colitis in the Rat: A Reproducible Experimental Model for Acute Ulcerative Colitis. European Surgical Research, 24, 211-225. http://dx.doi.org/10.1159/000129209
[13]
Kuralay, F., Yildiz, C., Ozutemiz, O., Islekel, H., Caliskan, S., Bingol, B. and Ozkal, S. (2003) Effects of Trimetazidine on Acetic Acid-Induced Colitis in Female Swiss Rats. Journal of Toxicology and Environmental Health, 66, 169-179. http://dx.doi.org/10.1080/15287390306402
[14]
Noronha-Blob, L., Lowe, V.C., Muhlahauser, R.O. and Bruch, R.M. (1993) NPC 15669, an Inhibitor of Neutrophil Recruitment Is Efficacious in Acetic Acid-Induced Colitis in Rats. Gastroenterology, 104, 1021-1029.
[15]
Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Analytical Biochemistry, 95, 351-358. http://dx.doi.org/10.1016/0003-2697(79)90738-3
[16]
Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S. and Tannenbaum, S.R. (1982) Analysis of Nitrate, Nitrite, and [15N] Nitrate in Biological Fluids. Analytical Biochemistry, 126, 131-138.
[17]
Grififith, O.W. (1980) Determination of Glutathione and Glutathione Disulfide Using Glutathione Reductase and 2-Vinylpyridine. Analytical Biochemistry, 106, 207-212. http://dx.doi.org/10.1016/0003-2697(80)90139-6
[18]
Mazar, J., Rogachev, B., Shaked, G., Ziv, N.Y., Czeiger, D., Chaimovitz, C., Zlotnik, M., Mukmenev, I., Byk, G. and Douvdevani, A. (2005) Involvement of Adenosine in the Anti-Inflammatory Action of Ketamine. Anesthesiology, 102, 1174-1181. http://dx.doi.org/10.1097/00000542-200506000-00017
[19]
Jena, G., Trivedi, P.P. and Sandala, B. (2012) Oxidative Stress in Ulcerative Colitis: An Old Concept but a New Concern. Free Radical Research, 46, 1339-1345. http://dx.doi.org/10.3109/10715762.2012.717692
[20]
Chavan, S., Sava, L., Saxena, V., Pillai, S., Sontakke, A. and Ingole, D. (2005) Reduced Glutathione: Importance of Specimen Collection. Indian Journal of Clinical Biochemistry, 20, 150-152. http://dx.doi.org/10.1007/BF02893062
[21]
Gillberg, L., Varsanyi, M., Sjostrom, M., Lordal, M., Lindholm, J. and Hellstrom, P.M. (2012) Nitric Oxide Pathway-Related Gene Alterations in Inflammatory Bowel Disease. Scandinavian Journal of Gastroenterology, 47, 1283-1297. http://dx.doi.org/10.3109/00365521.2012.706830
[22]
érces, D., Varga, G., Fazekas, B., Kovacs, T., Tokés, T., Tiszlavicz, L., Fülöp, F., Vécsei, L., Boros, M. and Kaszaki, J. (2012) N-Methyl-D-Asparate Receptor Antagonist Therapy Suppresses Colon Motility and Inflammatory Activation Six Days after the Onset of Experimental Colitis in Rats. European Journal of Pharmacology, 692, 225-234. http://dx.doi.org/10.1016/j.ejphar.2012.06.044
[23]
Popivanova, B.K., Kitamura, K., Wu, Y., Kondo, T., Kagaya, T., Kaneko, S., et al. (2008) Blocking TNF-Alpha in Mice Reduces Colorectal Carcinogenesis Associated with Chronic Colitis. Journal of Clinical Investigation, 118, 560-570.
[24]
Gokcinar, D., Ergin, V., Cumaoglu, A., Menevse, A. and Aricioglu, A. (2013) Effects of Ketamine, Propofol, and Ketofol on Proinflammatory Cytokines and Markers of Oxidative Stress in a Rat Model of Endotoxemia-Induced Acute Lung Injury. Acta Biochimica Polonica, 60, 451-456.
[25]
Koga, K., Ogata, M., Takenaka, I., Matsumoto, T. and Shigematsu, A. (1994) Ketamine Suppresses Tumor Necrosis Factor-Alpha Activity and Mortality in Carrageenan Sensitized Endotoxin Shock Model. Cardiogenic Shock, 44, 160-168.
[26]
Shimaoka, M., Iida, T., Ohara, A., Taenaka, N., Mashimo, T., Honda, T. and Yoshiya, I. (1996) Ketamine Inhibits Nitric Oxide Production in Mouse-Activated Macrophage-Like Cells. British Journal of Anaesthesia, 77, 238-242. http://dx.doi.org/10.1093/bja/77.2.238
[27]
Yu, Y., Zhou, Z., Xu, J., Liu, Z. and Wang, Y. (2002) Ketamine Reduces NF-κB Activation and TNF-α Production in Rat Mononuclear Cells Induced by Lipopolysaccharide in Vitro. Annals of Clinical & Laboratory Science, 32, 292-298.
[28]
Guzman-DeLaGarza, F.J., Camara-Lemarroy, C.R., Ballesteros-Elizondo, R.G., Alarcon-Galvan, G., Cordero-Perez, P. and Fernandez-Garza, N.E. (2010) Ketamine Reduces Intestinal Injury and Inflammatory Cell Infiltration after Ischemia/Reperfusion in Rats. Surgery Today, 40, 1055-1062.
[29]
Zahler, S., Heindl, B. and Becker, B.F. (1999) Ketamine Does Not Inhibit Inflammatory Responses of Cultured Human Endothelial Cells but Reduces Chemotactic Activation of Neutrophils. Acta Anaesthesiologica Scandinavica, 3, 1011-1016.
[30]
Buras, J.A. and Reenstra, W.R. (2007) Endothelial-Neutrophil Interactions during Ischemia and Reperfusion Injury: Basic Mechanisms of Hyperbaric Oxygen. Neurological Research, 29, 127-131. http://dx.doi.org/10.1179/016164107X174147
[31]
Roytblat, L., Talmor, D., Rachinsky, M., et al. (1998) Ketamine Attenuates the Interleukin-6 Response after Cardiopulmonary Bypass. Survey of Anesthesiology, 87, 266-271.
[32]
Bartoc, C., Frumento, R.J., Jalbout, M., Bennett-Guerrero, E., Du, E. and Nishanian, E. (2006) A Randomized, Double-Blind, Placebo-Controlled Study Assessing the Anti-Inflammatory Effects of Ketamine in Cardiac Surgical Patients. Journal of Cardiothoracic and Vascular Anesthesia, 20, 217-222. http://dx.doi.org/10.1053/j.jvca.2005.12.005
[33]
Zilberstein, G., Levy, R., Rachinsky, M., et al. (2002) Ketamine Attenuates Neutrophil Activation after Cardiopulmonary Bypass. Anesthesia & Analgesia, 95, 531-536.
[34]
Varga, G., érces, D., Fazekas, B., Fülöp, M., Kovacs, T., Kaszaki, J., Fülöp, F., Vécsei, L. and Boros, M. (2010) N-Methyl-D-Asparate Receptor Antagonism Decreases Motility and Inflammatory Activation in the Early Phase of Acute Experimental Colitis in the Rats. Neurogastroenterology & Motility, 22, 217-225. http://dx.doi.org/10.1111/j.1365-2982.2009.01390.x
[35]
Hirota, K. and Lambert, D.J. (2011) Ketamine: New Uses for an Old Drug. BJA, 107, 123-126. http://dx.doi.org/10.1093/bja/aer221