Evaluation of Cisplatin-Loaded Polymeric Micelles and Hybrid Nanoparticles Containing Poly(Ethylene Oxide)-Block-Poly(Methacrylic Acid) on Tumor Delivery
Particulate carriers such as polymeric micelles (PMs) and liposomes have been investigated to increase drug accumulation in tumors and reduce distribution to healthy tissues. In this study, we prepared PM and hybrid nanoparticles (HNPs) with poly(ethylene oxide)-block-poly(methacrylic acid) (PEO-b-PMAA) for loading cisplatin, and evaluated cisplatin release, cytotoxicity, and biodistribution in mice. PM composed of PEO-b-PMAA and HNPs composed of egg phosphatidylcholine (EPC)/PEO-b-PMAA at molar ratios of 50/2.8 (HNP-P5) and 50/50 (HNP-P50), respectively, were prepared by a nanoprecipitation method. The sizes of PM, HNP-P5, and HNP-P50 after inclusion of cisplatin were approximately 200, 100, and 55 nm, respectively, and their entrapment efficiencies were approximately 44% - 66%. In the drug-release study, HNP-P5 and HNP-P50 showed reduced release of cisplatin compared with PM. Regarding the cytotoxic assay, HNP-P5 exhibited lower cytotoxicity for mouse Lewis lung carcinoma (LLC) and mouse colon carcinoma Colon 26 cells than PM and HNP-P50. In terms of biodistribution, PM could significantly improve blood circulation and tumor accumulation after intravenous injection into Colon 26 tumor-bearing mice compared with free cisplatin, but HNP-P5 and HNP-P50 did not. EPC in HNPs might be destabilized in the circulation, although it could reduce release of cisplatin in in vitro experiments. This study suggested that polymeric micelles composed of PEO-b-PMAA are a better carrier for cisplatin than hybrid nanoparticles composed of PEO-b-PMAA and EPC.
References
[1]
Kelland, L. (2007) The Resurgence of Platinum-Based Cancer Chemotherapy. Nature Reviews Cancer, 7, 573-584. http://dx.doi.org/10.1038/nrc2167
[2]
Homesley, H.D., Bundy, B.N., Hurteau, J.A. and Roth, L.M. (1999) Bleomycin, Etoposide, and Cisplatin Combination Therapy of Ovarian Granulosa Cell Tumors and Other Stromal Malignancies: A Gynecologic Oncology Group Study. Gynecologic Oncology, 72, 131-137. http://dx.doi.org/10.1006/gyno.1998.5304
[3]
Ray-Coquard, I., Biron, P., Bachelot, T., Guastalla, J.P., Catimel, G., Merrouche, Y., Droz, J.P., Chauvin, F. and Blay, J.Y. (1998) Vinorelbine and Cisplatin (CIVIC Regimen) for the Treatment of Metastatic Breast Carcinoma after Failure of Anthracycline- and/or Paclitaxel-Containing Regimens. Cancer, 82, 134-140. http://dx.doi.org/10.1002/(SICI)1097-0142(19980101)82:1<134::AID-CNCR16>3.0.CO;2-3
[4]
Miller, R.P., Tadagavadi, R.K., Ramesh, G. and Reeves, W.B. (2010) Mechanisms of Cisplatin Nephrotoxicity. Toxins (Basel), 2, 2490-2518. http://dx.doi.org/10.3390/toxins2112490
[5]
Quasthoff, S. and Hartung, H.P. (2002) Chemotherapy-Induced Peripheral Neuropathy. Journal of Neurology, 249, 9-17. http://dx.doi.org/10.1007/PL00007853
[6]
Kurihara, N., Kubota, T., Hoshiya, Y., Otani, Y., Ando, N., Kumai, K. and Kitajima, M. (1996) Pharmacokinetics of Cis-Diamminedichloroplatinum (II) Given as Low-Dose and High-Dose Infusions. Journal of Surgical Oncology, 62, 135-138. http://dx.doi.org/10.1002/(SICI)1096-9098(199606)62:2<135::AID-JSO10>3.0.CO;2-7
[7]
Simon, T., Hero, B., Dupuis, W., Selle, B. and Berthold, F. (2002) The Incidence of Hearing Impairment after Successful Treatment of Neuroblastoma. Klinische Padiatrie, 214, 149-152. http://dx.doi.org/10.1055/s-2002-33179
[8]
El-Sayyad, H., Ismail, M.F., Shalaby, F.M., Abou-El-Magd, R.F., Gaur, R.L., Fernando, A., Raj, M.H. and Ouhtit, A. (2009) Histopathological Effects of Cisplatin, Doxorubicin and 5-Flurouracil (5-FU) on the Liver of Male Albino Rats. International Journal of Biological Sciences, 5, 466-473. http://dx.doi.org/10.7150/ijbs.5.466
[9]
Newman, M.S., Colbern, G.T., Working, P.K., Engbers, C. and Amantea, M.A. (1999) Comparative Pharmacokinetics, Tissue Distribution, and Therapeutic Effectiveness of Cisplatin Encapsulated in Long-Circulating, Pegylated Liposomes (SPI-077) in Tumor-Bearing Mice. Cancer Chemotherapy and Pharmacology, 43, 1-7. http://dx.doi.org/10.1007/s002800050855
[10]
Slingerland, M., Guchelaar, H.J. and Gelderblom, H. (2012) Liposomal Drug Formulations in Cancer Therapy: 15 Years along the Road. Drug Discovery Today, 17, 160-166. http://dx.doi.org/10.1016/j.drudis.2011.09.015
[11]
Leite, E.A., Giuberti Cdos, S., Wainstein, A.J., Wainstein, A.P., Coelho, L.G., Lana, A.M., Savassi-Rocha, P.R. and De Oliveira, M.C. (2009) Acute Toxicity of Long-Circulating and pH-Sensitive Liposomes Containing Cisplatin in Mice after Intraperitoneal Administration. Life Sciences, 84, 641-649. http://dx.doi.org/10.1016/j.lfs.2009.02.002
[12]
Carvalho Jr., A.D., Vieira, F.P., Melo, V.J., Lopes, M.T., Silveira, J.N., Ramaldes, G.A., Garnier-Suillerot, A., Pereira-Maia, E.C. and Oliveira, M.C. (2007) Preparation and Cytotoxicity of Cisplatin-Containing Liposomes. Brazilian Journal of Medical and Biological Research, 40, 1149-1157. http://dx.doi.org/10.1590/S0100-879X2006005000125
[13]
Cepeda, V., Fuertes, M.A., Castilla, J., Alonso, C., Quevedo, C. and Perez, J.M. (2007) Biochemical Mechanisms of Cisplatin Cytotoxicity. Anti-Cancer Agents in Medicinal Chemistry, 7, 3-18. http://dx.doi.org/10.2174/187152007779314044
[14]
Kwon, G.G. and Katoka, K. (2012) Block Copolymer Micelles as Long-Circulating Vehicles. Advanced Drug Delivery Reviews, 64, 237-245. http://dx.doi.org/10.1016/j.addr.2012.09.016
[15]
Mori, H. and Muller, A.H.E. (2003) New Polymeric Architectures with (Meth)acrylic Acid Segments. Progress in Polymer Science, 28, 1403-1439. http://dx.doi.org/10.1016/S0079-6700(03)00076-5
[16]
Owen, S.C., Chan, D.P.Y. and Shoichet, M.S. (2012) Polymeric Micelle Stability. Nano Today, 7, 53-65. http://dx.doi.org/10.1016/j.nantod.2012.01.002
[17]
Mandal, B., Bhattacharjee, H., Mittal, N., Sah, H., Balabathula, P., Thoma, L.A. and Wood, G.C. (2013) Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles as a Drug Delivery Platform. Nanomedicine, 9, 474-491. http://dx.doi.org/10.1016/j.nano.2012.11.010
[18]
Bligh, E.G. and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917. http://dx.doi.org/10.1139/o59-099
[19]
Walker, R.A., Gruetzmacher, J.A. and Richmond, G.L. (1998) Phosphatidylcholine Monolayer Structure at a Liquid-Liquid Interface. Journal of the American Chemical Society, 120, 6991-7003. http://dx.doi.org/10.1021/ja980736k
[20]
Nishiyama, N. and Kataoka, K. (2006) Current State, Achievements, and Future Prospects of Polymeric Micelles as Nanocarriers for Drug and Gene Delivery. Pharmacology & Therapeutics, 112, 630-648. http://dx.doi.org/10.1016/j.pharmthera.2006.05.006
[21]
Kim, J.O., Nukolova, N.V., Oberoi, H.S., Kabanov, A.V. and Bronich, T.K. (2009) Block Ionomer Complex Micelles with Cross-Linked Cores for Drug Delivery. Polymer Science Series A: Polymer Physics, 51, 708-718. http://dx.doi.org/10.1134/S0965545X09060169
[22]
Hadinoto, K., Sundaresan, A. and Cheow, W.S. (2013) Lipid-Polymer Hybrid Nanoparticles as a New Generation Therapeutic Delivery Platform: A Review. European Journal of Pharmaceutics and Biopharmaceutics, 85, 427-443. http://dx.doi.org/10.1016/j.ejpb.2013.07.002