全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design of Low-Voltage, Low-Power FGMOS Based Voltage Buffer, Analog Inverter and Winner-Take-All Analog Signal Processing Circuits

DOI: 10.4236/cs.2016.71001, PP. 1-10

Keywords: FGMOS, Voltage Buffer, Analog Inverter, Winner-Take-All (WTA), Analog Signal Processing Circuits

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper proposes novel floating-gate MOSFET (FGMOS) based Voltage Buffer, Analog Inverter and Winner-Take-All (WTA) circuits. The proposed circuits have low power dissipation. All proposed circuits are simulated using SPICE in 180 nm CMOS technology with supply voltages of ±1.25 V. The simulation results demonstrate increase in input range for FGMOS based voltage buffer and analog inverter and maximum power dissipation of 0.5 mW, 1.9 mW and 0.429 mW for FGMOS based voltage buffer, analog inverter and WTA circuits, respectively. The proposed circuits are intended to find applications in low voltage, low power consumer electronics.

References

[1]  Rodriguez-Villegas, E. (2006) Low Power and Low Voltage Circuit Design with the FGMOS Transistor (IET Circuits, Devices and Systems Series 20). The Institution of Engineering and Technology, London.
[2]  Kumar, M.G.L., Khare, K. and Sharma, P. (2012) Low Voltage-Power-Area FGMOS Neural Classifier Circuit for VLSI Analog BIST. International Journal of Engineering Research & Technology, 1, 1-4.
[3]  Pandey, R. and Gupta, M. (2010) FGMOS Based Voltage-Controlled Grounded Resistor. Radioengineering, 19, 455-459.
[4]  Berg, Y. and Lande, T.S. (1997) Programmable Floating Gate MOS Logic for Low-Power Operation. Proceedings of IEEE International Symposium on Circuits and Systems, 3, 1792-1795.
http://dx.doi.org/10.1109/iscas.1997.621493
[5]  Manhas, P.S., Sharma, S., Pal, K., Mangotra, L.K. and Jamwal, K.S. (2008) High Performance FGMOS-Based Low Voltage Current Mirror. Indian Journal of Pure & Applied Physics, 46, 355-358.
[6]  Liming, Y., Embadi, S.H.K. and Sanchez-Sinencio, E. (1997) A Floating Gate MOSFET D/A Converter. Proceedings of IEEE International Symposium on Circuits and Systems, 1, 409-412.
http://dx.doi.org/10.1109/iscas.1997.608754
[7]  Srivastava, R., Gupta, M. and Singh, U. (2014) Low Voltage Floating Gate MOS Transistor Based Four Quadrant Multiplier. Radioengineering, 23, 1150-1160.
[8]  Gupta, M., Srivastava, R. and Singh, U. (2014) Low Voltage Floating Gate MOS Transistor Based Differential Voltage Squarer. ISRN Electronics, 2014, Article ID: 357184.
[9]  Ramirez-Angulo, J., Choi, S.C. and Altamirano, G.G. (1995) Low Voltage Circuits Building Blocks Using Multiple Input Floating Gate Transistors. IEEE Transactions on Circuits and Systems - I, 42, 971-974.
http://dx.doi.org/10.1109/81.477210
[10]  Moolpho, K. and Ngarmnil, J. (2006) Low Voltage High-Performance Class-AB FGMOS Buffer. IEEE Asia Pacific Conference on Circuits and Systems, Singapore, 4-7 December 2006, 1779-1782.
http://dx.doi.org/10.1109/apccas.2006.342163
[11]  Gupta, M., Singh, U. and Srivastava, R. (2013) High-Frequency and Low-Power Output Stages Based on FGMOS Flipped Voltage Follower. ISRN Electronics, 2013, Article ID: 914058.
[12]  Trejo-Guerra, R., Tlelo-Cuautle, E., Jimenez-Fuentes, M. and Sánchez-López, C. (2010) Multiscroll Oscillator Based on Floating Gate CMOS Inverter. 7th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE), Tuxtla Gutierrez, 8-10 September 2010, 541-545.
http://dx.doi.org/10.1109/iceee.2010.5608587
[13]  Alfredsson, J., Aunet, S. and Oelmann, B. (2005) Basic Speed and Power Properties of Digital Floating-Gate Circuits Operating in Subthreshold. Proceedings of IFIP VLSI-SOC 2005, 229-232.
[14]  Berg, Y., Aunet, S., Ness, O. and Hovin, M. (2001) Floating-Gate CMOS Differential Analog Inverter for Ultra Low-Voltage Applications. IEEE International Symposium on Circuits and Systems, 1, 9-12.
http://dx.doi.org/10.1109/iscas.2001.921775
[15]  Shen, J., Zhang, Y.X. and Mu, G. (1993) Optical Pattern Recognition System Based on a Winner-Take-All Model of a Neural Network. Optical Engineering, 32, 1053-1056.
http://dx.doi.org/10.1117/12.61200
[16]  Carrillo, J.M., Duque-Carrillo, J.F., Torralba, A. and Carvajal, R.G. (2005) Class-AB Rail-to-Rail CMOS Analog Buffer. IEEE International Symposium on Circuits and Systems, 2, 1008-1011.
http://dx.doi.org/10.1109/iscas.2005.1464761
[17]  Sackinger, E. and Guggenbuhl, W. (1987) A Versatile Building Block: The CMOS Differential Difference Amplifier. IEEE Journal of Solid-State Circuits, 22, 287-294.
http://dx.doi.org/10.1109/JSSC.1987.1052715
[18]  Prommee, P. and Chattrakun, K. (2011) CMOS WTA Maximum and Minimum Circuits with Their Applications to Analog Switch and Rectifiers. Microelectronics Journal, 42, 52-62.
http://dx.doi.org/10.1016/j.mejo.2010.09.004
[19]  Chiu, W., Liu, S.I., Tsao, H.W. and Chen, J.J. (1996) CMOS Differential Difference Current Conveyors and Their Applications. IEE Proceedings on Circuits Devices and Systems, 143, 91-96.
http://dx.doi.org/10.1049/ip-cds:19960223

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133