The efficient citral hydrogenation was achieved in aqueous media using Pd/CMS and alkali additives like K2CO3. The alkali concentrations, reaction temperature and the Pd metal content were optimized to enhance the citral hydrogenation under aqueous media. In the absence of alkali, citral hydrogenation was low and addition of alkali promoted to ~92% hydrogenation without reduction in the selectivity to citronellal. The alkali addition appears to be altered the palladium sites. The pore size distribution reveals that the pore size of these catalysts is in the range of 0.96 to 0.7 nm. The palladium active sites are also quite uniform based on the TPR data. The catalytic parameters are correlated well with the activity data.
References
[1]
Wu, B., Huang, H., Yang, J., Zheng, N. and Fu, G. (2012) Selective Hydrogenation of α,β-Unsaturated Aldehydes Catalyzed by Amine-Capped Platinum-Cobalt Nanocrystals. Angewandte Chemie International Edition, 51, 3440-3443.
http://dx.doi.org/10.1002/anie.201108593
[2]
Concepción, P., Perez, Y., Hernandez-Garrido, J.C., Fajardo, M., Calvino, J.J. and Corma, A. (2013) The Promotional Effect of Sn-Beta Zeolites on Platinum for the Selective Hydrogenation of α,β-Unsaturated Aldehydes. Physical Chemistry Chemical Physics, 15, 12048-12055. http://dx.doi.org/10.1039/c3cp50519g
[3]
Chapuis, C. and Jacoby, D. (2001) Catalysis in the Preparation of Fragrances and Flavours. Applied Catalysis A: General, 221, 93-117. http://dx.doi.org/10.1016/S0926-860X(01)00798-0
[4]
Monteiro, J.L.P. and Veloso, C.O. (2004) Catalytic Conversion of Terpenes into Fine Chemicals. Topics in Catalysis, 27, 169-180. http://dx.doi.org/10.1023/B:TOCA.0000013551.99872.8d
[5]
Samrat, M. and Albert Vannice, M. (2006) Solvent Effects in Liquid-Phase Reactions: I. Activity and Selectivity during Citral Hydrogenation on Pt/SiO2 and Evaluation of Mass Transfer Effects. Journal of Catalysis, 243, 108-130.
http://dx.doi.org/10.1016/j.jcat.2006.06.021
[6]
Kotohiro, N. (1998) Transition Metal Catalyzed Hydrogenation or Reduction in Water. Journal of Molecular Catalysis A: Chemical, 130, 1-28. http://dx.doi.org/10.1016/S1381-1169(97)00141-6
[7]
Burgener, M., Furrer, R., Mallat, T. and Baiker, A. (2004) Hydrogenation of Citral over Pd/Alumina: Comparison of “Supercritical” CO2 and Conventional Solvents in Continuous and Batch Reactors. Applied Catalysis A: General, 268, 1-8. http://dx.doi.org/10.1016/j.apcata.2004.03.013
[8]
Liu, R., Zhao, F., Fujita, S.I. and Arai, M. (2007) Selective Hydrogenation of Citral with Transition Metal Complexes in Supercritical Carbon Dioxide. Applied Catalysis A: General, 316, 127-133.
http://dx.doi.org/10.1016/j.apcata.2006.08.040
[9]
Liu, R.X., Yu, Y.C., Yoshida, K., Li, G.M., Jiang, H.X., Zhang, M.H., Zhao, F.Y., Fujita, S.-I. and Aria, M. (2010) Physically and Chemically Mixed TiO2-Supported Pd and Au Catalysts: Unexpected Synergistic Effects on Selective Hydrogenation of Citral in Supercritical CO2. Journal of Catalysis, 269, 191-200.
[10]
Negoi, A., Wuttke, S., Kemnitz, E., Macovei, D., Parvulescu, V.I., Teodorescu, C.M. and Coman, S.M. (2010) One-Pot Synthesis of Menthol Catalyzed by a Highly Diastereoselective Au/MgF2 Catalyst. Angewandte Chemie International Edition, 49, 8134-8138. http://dx.doi.org/10.1002/anie.201002090
[11]
Coman, S.M., Patil, P., Wuttke, S. and Kemnitz, E. (2009) Cyclisation of Citronellal over Heterogeneous Inorganic Fluorides—Highly Chemo- and Diastereoselective Catalysts for (±)-Isopulegol. Chemical Communication, 4, 460-462.
http://dx.doi.org/10.1039/B817572A
[12]
Satagopan, V. and Chandalia, S.B. (1994) Selectivity Aspects in the Multi-Phase Hydrogenation of α,β-Unsaturated Aldehydes over Supported Noble Metal Catalysts: Part I. Journal of Chemical Technology and Biotechnology, 59, 257-263. http://dx.doi.org/10.1002/jctb.280590308
[13]
Tin, K.C., Wong, N.B., Li, Y.Z. and Li, X.J. (1999) Studies on Catalytic Hydrogenation of Citral by Water-Soluble Palladium Complex. Journal of Molecular Catalysis A: Chemical, 137, 113-119.
http://dx.doi.org/10.1016/S1381-1169(98)00111-3
[14]
Salminen, E., Virtanen, P., Kordas, K. and Jyri-Pekka, M. (2012) Alkaline Modifiers as Performance Boosters in Citral Hydrogenation over Supported Ionic Liquid Catalysts (SILCAs). Catalysis Today, 196, 126-131.
http://dx.doi.org/10.1016/j.cattod.2012.04.066
[15]
Zhao, Y., Zhang, H.Y., Huang, C.L., Chen, S., Bo, Y., Xu, J.L. and Liu, Z.M. (2013) Pd Nanoparticles Immobilized on Graphite Oxide Modified with a Base: Highly Efficient Catalysts for Selective Hydrogenation of Citral. Science China Chemistry, 56, 203-209. http://dx.doi.org/10.1007/s11426-012-4751-2
[16]
Laiqi, Z., John, M.W., Adrian, P.B. and Sugat, R. (1998) Studies on the Hydrogenation of Cinnamaldehyde over Pd/C Catalysts. Journal of Chemical Technology and Biotechnology, 72, 264-272.
http://dx.doi.org/10.1002/(SICI)1097-4660(199807)72:3<264::AID-JCTB897>3.0.CO;2-2
[17]
Bailon-Garcia, E., Maldonado-Hodar, F.J., Perez-Cadenas, A.F. and Carrasco-Marin, F. (2013) Catalysts Supported on Carbon Materials for the Selective Hydrogenation of Citral. Catalysts, 3, 853-877.
http://dx.doi.org/10.3390/catal3040853
[18]
Chen, H., Yang, H., Briker, Y., Fairbridge, C., Omotoso, O., Ding, L., Zheng, Y. and Ring, Z. (2007) Effect of Hydrogen Spillover on the Hydrogenation of 1-Hexene over Diluted Carbon Molecular Sieve Supported Pt Catalyst. Catalysis Today, 125, 256-262. http://dx.doi.org/10.1016/j.cattod.2007.01.024
[19]
Giasafaki, D., Charalambopoulou, G., Tampaxis, C., Stubos, A. and Steriotis, T. (2014) Hydrogen Sorption Properties of Pd-Doped Carbon Molecular Sieves. International Jounral of Hydrogen Energy, 39, 9830-9836.
http://dx.doi.org/10.1016/j.ijhydene.2014.02.149
[20]
Cooper, B.J. (1970) Platinum-Carbon Catalysts with Molecular Sieve Properties: Shape Selectivity in Hydrogenation Catalysis. Platinum Metals Review, 14, 133-139.
[21]
Nogueira, I.M., Filho, J.M., De Vasconcelos, P.H.M., Saraiva, G.D. and Oliveira, A.C. (2011) Catalytic Activity of Nitrogen-Containing Molecular Sieves and Nitrogen-Containing Carbon for α,β-Unsaturated Esters Production. Journal of Chemical Engineering, 172, 1054-1065. http://dx.doi.org/10.1016/j.cej.2011.06.028
[22]
Cheng, L.H., Fu, Y.J., Liao, K.S., Chen, J.T., Hu, C.C., Hung, W.S., Lee, K.R. and Lai, J.Y. (2014) A High-Permeance Supported Carbon Molecular Sieve Membrane Fabricated by Plasma-Enhanced Chemical Vapor Deposition Followed by Carbonization for CO2 Capture. Journal of Membrane Science, 460, 1-8.
http://dx.doi.org/10.1016/j.memsci.2014.02.033
Simon, L.C., John, H.S. and Peter, B. (2001) Thermodynamic Modelling of Aqueous Aerosols Containing Electrolytes and Dissolved Organic Compounds. Aerosol Science, 32, 713-738.
http://dx.doi.org/10.1016/S0021-8502(00)00105-1
[25]
Lamy-Pitara, E., Mouahid, S.E.I., Kerkeni, S. and Barbier, J. (2003) Effect of Anions and Cations on the Aqueous Phase Catalytic Hydrogenation of C C Bonds. Electrochimica Acta, 48, 4311-4316.
http://dx.doi.org/10.1016/j.electacta.2003.07.001
[26]
Fagherazzi, G., Benedetti, A., Spolizzi, Di Mario, A. (1995) Structural Investigation on the Stoichiometry of β-PdHx in Pd/SiO2 Catalysts as a Function of Metal Dispersion. Catalysis Letters, 32, 293-303.
http://dx.doi.org/10.1007/BF00813223
[27]
Paal, Z. and Menon, P.G. (1983) Hydrogen Effects in Metal Catalysts. Catalysis Reviews: Science and Engineering, 25, 229-324. http://www.tandfonline.com/doi/abs/10.1080/01614948308079667
[28]
Krishna Murthy, J., Chandra Shekar, S., Padmasri, A.H., Venugopal, A., Siva Kumar, V., Nagarja, B.M., Shashikala, V., David Raju, B., Kanta Rao, P. and Rama Rao, K.S. (2004) Promotional Effect of Magnesia Addition to Active Carbon Supported Pd Catalyst on the Characteristics and Hydrodechlorination Activity of CCl2F2. Catalysis Communication, 5, 161-167. http://dx.doi.org/10.1016/j.catcom.2003.11.014
[29]
Sahle-Demessie, E. and Chandra Shekar, S. (2005) Hydrogenation of α, β-Unsaturated Carbonyls in scCO2 as Reaction Medium over Ni Supported Catalysts. USEPA, 2005-Anuual Meeting (AIChE Proceedings), Cincinnati, November 2005.
[30]
Coq, B., Kumbhar, P.S., Moreau, P. and Warawadekar, M.G. (1993) Liquid Phase Hydrogenation of Cinnamaldehyde over Supported Ruthenium Catalysts: Influence of Particle Size, Bimetallics and Nature of Support. Journal of Molecular Catalysis A: Chemical, 85, 215-228. http://dx.doi.org/10.1016/0304-5102(93)80103-2
[31]
Girair-Fendler, A., Richard, D. and Gallezot, P. (1990) Chemioselectivity in the Catalytic Hydrogenation of Cinnamaldehyde. Effect of Metal Particle Morphology. Catalysis Letters, 5, 175-181.
http://dx.doi.org/10.1007/BF00763950
[32]
Poltarzewski, Z., Galvagno, S., Pietropaolo, R. and Staiti, P. (1982) Hydrogenation of α, β-Unsaturated Aldehydes over Pt Sn/Nylon. Journal of Catalysis, 102, 190-198. http://dx.doi.org/10.1016/0021-9517(86)90153-3