全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工业建筑  2005 

时频联合分析方法在土木工程中的研究现状

DOI: 10.13204/j.gyjz200505020

Keywords: 时频分析,土木工程,非平稳信号

Full-Text   Cite this paper   Add to My Lib

Abstract:

时频联合分析方法因能同时提供信号的局部时频特征,适于分析非平稳信号而在土木工程领域得到了极大应用。线性变换、双线性变换和Hilbert-Huang变换是土木工程中常用的时频联合分析方法。根据时频分析方法的理论,将其应用于人工地震波模拟、结构动力反应分析和可靠性估计、结构参数识别及损伤检测等领域。通过对其在土木工程中的应用进行总结,提出了存在的问题,探讨了进一步研究的方向。

References

[1]  Shie Qian, Dapang Chen. Joint Time-Frequency Analysis. IEEE Signal Processing Magazine, 1999,16(2) :53 ~ 67;
[2]  Leon Cohen. Time-Frequency Distributions- a Review. Proceedings of the IEEE, 1989, 77(7): 941 ~ 981;
[3]  Norden E. Huang Z S, Steven R, Long, et al. The Empirical mode Decomposition and the Hilbert Spectrum for Nonlinear and NonStationary Time Series Analysis. Proc. R. Soc. A, 1998,454: 903 ~ 995;
[4]  Junjie Wang, Liehu Fan, Shie Qian, Jing Zhou. Simulations of NonStationary Frequency Content and Its Importance to Seismic Assessment of Structures. Earthquake Engineering and Structural Dynamics, 2002,31:993 ~ 1 005;
[5]  Conte J P, Peng B F. Fully Nonstationary Analytical Earthquake Ground-Motion Model. Journal of Engineering Mechanics, 1997, 123(1): 15~24;
[6]  曹晖,赖明,白绍良.基于小波变换的地震地面运动仿真研究.土木工程学报,2002,35(4):40~46;
[7]  Sushovan Mukherjee,Gupta Vinay K. Wavelet-Based Characterization of Design Ground Motions. Earthquake Engineering and Structural Dynamics, 2002, 31:1 173~1 190;
[8]  Biswajit Basu, Gupta Vinay K. Seismic Response of SDOF System by Wavelet Modeling of Nonstationary Processes. Journal of Engineering Mechanics, 1998,124(10): 1 142 ~ 1 150;
[9]  Biswajit Basu. Gupta Vinay K. Stochastic Seismic Response of SingleDegree-of-Freedom Systems through Wavelets. Engineering Structures,2000, 22:1 714 ~ 1 722;
[10]  Jun Lyama, Hitoshi Kuwamura. Application of Wavelets to Analysis and Simulation of Earthquake Motions. Earthquake Engineering and Structural Dynamics, 1999,28:255 ~ 272;
[11]  Biswajit Basu, Gupta Vinay K. Non-Stationary Seismic Response of MDOF Systems by Wavelet Transform. Earthquake Engineering and Structural Dynamics, 1997, 26:1 243 ~ 1 258;
[12]  Biswajit Basu, Gupta Vinay K. Wavelet-Based Analysis of NonStationary Response of a Slipping Foundation. Journal of Sound and Vibration, 1999, 222(4) :547 ~ 563;
[13]  Biswajit Basu, Gupta Vinay K. Wavelet-Based Non-Stationary Response Analysis of Friction Based-Isolated Structure. Earthquake Engineering and Structural Dynamics, 2000,29:1 659 ~ 1 676;
[14]  曹晖,赖明,白绍良.基于小波分析的结构动力可靠度估计.世界地震工程,2000,16(4):70~77;
[15]  于开平,邹经湘.模态参数识别的小波变换方法.宇航学报,1999,20(4):72~76;
[16]  Bonato P, Ceravolo R, Stefano A De. Time-Frequency and Ambiguity Function Approaches in Structural Identification. Journal of Engineering Mechanics, 1997, 123:1 260 ~ 1 267;
[17]  Bonato P, Ceravolo R, Stefano A De. The Use of Wind Excitation in Structural Identification. Journal of Wind Engineering and Industrial Aerodynamics, 1998,74 - 76:709 ~ 718;
[18]  Bonato P, Ceravolo R, Stefano A De, Molonari F. Use of Cross-TimeFrequency Estimators for Structural Identification in Non-Stationary Conditions and under Unknown Excitation. Journal of Sound and Vibration, 2000,237(5):775 ~ 791;
[19]  Yang Jann N, Ying Lei, Shuwen Pan, Norden Huang. System Identification of Linear Structures Based on Hilbert-Huang Spectral Analysis. Part 1:Normal Modes. Earthquake Engineering and Structure Dynamics, 2003, 32:1 443 ~ 1 467;
[20]  Yang Jann N, Ying Lei, Shuwen Pan, Norden Huang. System Identification of Linear Structures Based on Hilbert-Huang Spectral Analysis. Part 2: Complex Modes. Earthquake Engineering and Structure Dynamics, 2003,32:1 533 ~ 1 554;
[21]  续秀忠,李忠付,等.非平稳环境激励下线性结构在线模态参数辨识.上海交通大学学报,2003,37(1):118~121;
[22]  韩海明,沈涛虹,宋汉文.工况模态分析的EMD方法.振动与冲击,2002,21(4):69~71;
[23]  陈隽,徐幼麟.HHT方法在结构模态参数识别中的应用.振动工程学报,2003,16(3):383~388;
[24]  Michanel Feldman. Non-Linear System Vibration Analysis Using Hilbert Transform-I. Free Vibration Analysis Method ‘FREEVIB'. Mechanical Systems and Signal Processing 1994, 8(2) :119 ~ 127;
[25]  LiLi Wang, Jinghui Zhang, Chao Wang, Shiyue Hu. Time-Frequency Analysis of Nonlinear System: the Skeleton Linear Model and the Skeleton Curves. Journal of Sound and Acoustics, 2003, 125:170 ~ 177;
[26]  LiLi Wang, Jinghui Zhang, Chao Wang, Shiyue Hu. Identification of Nonlinear Systems through Time-Frequency Filtering Technique. Journal of Sound and Acoustics. 2003, 125:199 ~ 204;
[27]  续秀忠,张志谊,华宏星.应用时频分析方法辨识时变系统的模态参数.振动工程学报,2003,16(6):358~362;
[28]  Staszewski W J. Identification of Non-Linear Systems Using Multi-Scale Rides and Skeletons of the Wavelet Transform. Journal of Sound and Vibration, 1998,214(4) :639 ~ 658;
[29]  Haase M, Widjajakusuma J. Damage Identification Based on Ridges and Maxima Lines of the Wavelet Transform. International Journal of Engineering Science. 2003, 41:1 423 ~ 1 443;
[30]  高宝成,时良平,等基于小波分析的简支梁裂缝识别方法研究振动工程学报,1997,10(1):81~85;
[31]  Liew K M, Wang Q. Application of Wavelet Theory for Crack Identification in Structures. Journal of Engineering Mechanics, 1998,124(2): 152 ~ 157;
[32]  丁幼亮,李爱群,韩晓林.基于小波包分析的结构实时损伤报警数值研究.东南大学学报(自然科学版),2003,33(5):643~646;
[33]  Zhou Z, Noori M, Amand R St. Wavelet-Based Approach for Structural Damage Detection. Journal of Engineering Mechanics, 2000, 126(7):677 ~ 683;
[34]  李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与试验研究.土木工程学报,2003,36(5):52~57;
[35]  Adriana Hera, Ahikun Hou. Application of Wavelet Approach for ASCE Structural Health Monitoring Benchmark Studies. Journal of Engineering Mechanics, 2004, 130(1) :96~ 104;
[36]  Yang J N, Lei Y, Lin S, Huang N. Hilbert-Huang Based Approach for Structural Damage Detection. Journal of Engineering Mechanics, 2004,130(1):85 ~ 95;
[37]  刘志刚,王晓茹,钱清泉.小波网络的研究进展与应用.电力系统自动化,2003,27(6):73~79;
[38]  鞠彦忠,阎贵平,陈建斌,等.用小波神经网络检测结构损伤.工程力学,2003,20(6):176~181;
[39]  Sun Z, Chang C C. Structural Damage Assessment Based on Wavelet Packet Transform. Journal of Structural Engineering, 2002, 128(10):1 354 ~ 1 361;
[40]  Bonato P, Ceravolo R, Stefano A De, Knafilitz M. Bilinear TimeFrequency Transformations in the Analysis of Damaged Structures.Mechanical Systems and Signal Processing, 1997, 11(4):509 ~ 527
[41]  樊剑,唐家祥.基于离散小波变换的多自由度结构非平稳随机响应计算.振动工程学报,2001,14(4):438~441;
[42]  樊剑,唐家祥.基于离散小波变换的滑移隔振结构非平稳随机响应计算.工程力学,2002,19(2):73~77;
[43]  段雪平,朱宏平.地震作用下结构动力响应的小波分析.华中理工大学学报,2000,28(11):75~78;
[44]  肖梅岭,叶燎原.连续小波变换用于结构地震反应分析.世界地震工程,2001,17(4):79~83;
[45]  周太全,李光霞,贾军波.基础隔震结构在地震作用下动力响应小波分析.工业建筑,2003,33(6):21~23;
[46]  应益荣,梁家荣.单质点弹性体系的小波变换.西北建筑工程学院学报,1999(1):75~80;
[47]  Zhang Ray Ruichong, Shuo Ma, Erdal Safak, Stephen Hartzell. HilbertHuang Transform Analysis of Dynamic and Earthquake Motion Recordings.Journal of Engineering Mechanics, 2003, 129(8) :861 ~ 875;
[48]  Tso-Chien Pan, Chin Long Lee. Application of Wavelet Theory to Identify Yielding in Seismic Response of Bi-Linear Structures.Earthquake Engineering and Structural Dynamic, 2002, 31:379 ~ 398;
[49]  Staszewski W J. Identification of Damping in Mod Systems Using TimeScale Decomposition. Journal of Sound and Vibration, 1997, 203(2):283 ~ 305;
[50]  Lamarque C H, Pernot S, Cuer A. Damping Identification in MultiDegree-of Freedom Systems via a Wavelet-Logarithmic Decrement-Part1: Theory. Journal of Sound and Vibration. 2000, 235:361 ~ 374;
[51]  Slavic J, Simonovski I, Boltezar M. Damjping Identification Using a Continuous Wavelet Transform: Application to Real Data. Journal of Sound and Vibration, 2003, 262:291 ~ 307;
[52]  Kijeswski T, Kareem A. Wavelet Transform for System Identification in Civil Engineering Computer Aided Civil and Infrastructure Engineering.2003, 18:339 ~ 355;
[53]  Zhang Z Y, Hua H X, Xu X Z, Huang Z. Modal Parameter Identification through Gabor Expansion of Reponse Signals. Journal of Sound and Vibration, 2003, 266(5) :943 ~ 955;
[54]  oseph Lardies, Stephane Gouttbroze. Identification of Modal Parameters Using the Wavelet Transform. International Journal of Mechanical Sciences, 2002, 44: 2 263 ~ 2 283;
[55]  Yoshihiro Kitada, Identification of Nonlinear Structural Dynamic Systems Using Wavelets. Journal of Engineering Mechanics, 1998, 124(10) :1059~1066;
[56]  Ghanem R, Romeo F. A Wavelet-Based Approach for the Identification of Linear Time-Varying Dynamical Systems. Journal of Sound and Vibration, 2000, 234(4) :555 ~ 576;
[57]  Ghanem R, Romeo F. A Wavelet-Based Approach for Model and Parameter Identification of Non-Linear Systems. International Journal of Non-Linear Mechanics, 2001,36: 835 ~ 859;

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133