Leon Cohen. Time-Frequency Distributions- a Review. Proceedings of the IEEE, 1989, 77(7): 941 ~ 981;
[3]
Norden E. Huang Z S, Steven R, Long, et al. The Empirical mode Decomposition and the Hilbert Spectrum for Nonlinear and NonStationary Time Series Analysis. Proc. R. Soc. A, 1998,454: 903 ~ 995;
[4]
Junjie Wang, Liehu Fan, Shie Qian, Jing Zhou. Simulations of NonStationary Frequency Content and Its Importance to Seismic Assessment of Structures. Earthquake Engineering and Structural Dynamics, 2002,31:993 ~ 1 005;
[5]
Conte J P, Peng B F. Fully Nonstationary Analytical Earthquake Ground-Motion Model. Journal of Engineering Mechanics, 1997, 123(1): 15~24;
Sushovan Mukherjee,Gupta Vinay K. Wavelet-Based Characterization of Design Ground Motions. Earthquake Engineering and Structural Dynamics, 2002, 31:1 173~1 190;
[8]
Biswajit Basu, Gupta Vinay K. Seismic Response of SDOF System by Wavelet Modeling of Nonstationary Processes. Journal of Engineering Mechanics, 1998,124(10): 1 142 ~ 1 150;
[9]
Biswajit Basu. Gupta Vinay K. Stochastic Seismic Response of SingleDegree-of-Freedom Systems through Wavelets. Engineering Structures,2000, 22:1 714 ~ 1 722;
[10]
Jun Lyama, Hitoshi Kuwamura. Application of Wavelets to Analysis and Simulation of Earthquake Motions. Earthquake Engineering and Structural Dynamics, 1999,28:255 ~ 272;
[11]
Biswajit Basu, Gupta Vinay K. Non-Stationary Seismic Response of MDOF Systems by Wavelet Transform. Earthquake Engineering and Structural Dynamics, 1997, 26:1 243 ~ 1 258;
[12]
Biswajit Basu, Gupta Vinay K. Wavelet-Based Analysis of NonStationary Response of a Slipping Foundation. Journal of Sound and Vibration, 1999, 222(4) :547 ~ 563;
[13]
Biswajit Basu, Gupta Vinay K. Wavelet-Based Non-Stationary Response Analysis of Friction Based-Isolated Structure. Earthquake Engineering and Structural Dynamics, 2000,29:1 659 ~ 1 676;
Bonato P, Ceravolo R, Stefano A De. Time-Frequency and Ambiguity Function Approaches in Structural Identification. Journal of Engineering Mechanics, 1997, 123:1 260 ~ 1 267;
[17]
Bonato P, Ceravolo R, Stefano A De. The Use of Wind Excitation in Structural Identification. Journal of Wind Engineering and Industrial Aerodynamics, 1998,74 - 76:709 ~ 718;
[18]
Bonato P, Ceravolo R, Stefano A De, Molonari F. Use of Cross-TimeFrequency Estimators for Structural Identification in Non-Stationary Conditions and under Unknown Excitation. Journal of Sound and Vibration, 2000,237(5):775 ~ 791;
[19]
Yang Jann N, Ying Lei, Shuwen Pan, Norden Huang. System Identification of Linear Structures Based on Hilbert-Huang Spectral Analysis. Part 1:Normal Modes. Earthquake Engineering and Structure Dynamics, 2003, 32:1 443 ~ 1 467;
[20]
Yang Jann N, Ying Lei, Shuwen Pan, Norden Huang. System Identification of Linear Structures Based on Hilbert-Huang Spectral Analysis. Part 2: Complex Modes. Earthquake Engineering and Structure Dynamics, 2003,32:1 533 ~ 1 554;
Michanel Feldman. Non-Linear System Vibration Analysis Using Hilbert Transform-I. Free Vibration Analysis Method ‘FREEVIB'. Mechanical Systems and Signal Processing 1994, 8(2) :119 ~ 127;
[25]
LiLi Wang, Jinghui Zhang, Chao Wang, Shiyue Hu. Time-Frequency Analysis of Nonlinear System: the Skeleton Linear Model and the Skeleton Curves. Journal of Sound and Acoustics, 2003, 125:170 ~ 177;
[26]
LiLi Wang, Jinghui Zhang, Chao Wang, Shiyue Hu. Identification of Nonlinear Systems through Time-Frequency Filtering Technique. Journal of Sound and Acoustics. 2003, 125:199 ~ 204;
Staszewski W J. Identification of Non-Linear Systems Using Multi-Scale Rides and Skeletons of the Wavelet Transform. Journal of Sound and Vibration, 1998,214(4) :639 ~ 658;
[29]
Haase M, Widjajakusuma J. Damage Identification Based on Ridges and Maxima Lines of the Wavelet Transform. International Journal of Engineering Science. 2003, 41:1 423 ~ 1 443;
Sun Z, Chang C C. Structural Damage Assessment Based on Wavelet Packet Transform. Journal of Structural Engineering, 2002, 128(10):1 354 ~ 1 361;
[40]
Bonato P, Ceravolo R, Stefano A De, Knafilitz M. Bilinear TimeFrequency Transformations in the Analysis of Damaged Structures.Mechanical Systems and Signal Processing, 1997, 11(4):509 ~ 527
Zhang Ray Ruichong, Shuo Ma, Erdal Safak, Stephen Hartzell. HilbertHuang Transform Analysis of Dynamic and Earthquake Motion Recordings.Journal of Engineering Mechanics, 2003, 129(8) :861 ~ 875;
[48]
Tso-Chien Pan, Chin Long Lee. Application of Wavelet Theory to Identify Yielding in Seismic Response of Bi-Linear Structures.Earthquake Engineering and Structural Dynamic, 2002, 31:379 ~ 398;
[49]
Staszewski W J. Identification of Damping in Mod Systems Using TimeScale Decomposition. Journal of Sound and Vibration, 1997, 203(2):283 ~ 305;
[50]
Lamarque C H, Pernot S, Cuer A. Damping Identification in MultiDegree-of Freedom Systems via a Wavelet-Logarithmic Decrement-Part1: Theory. Journal of Sound and Vibration. 2000, 235:361 ~ 374;
[51]
Slavic J, Simonovski I, Boltezar M. Damjping Identification Using a Continuous Wavelet Transform: Application to Real Data. Journal of Sound and Vibration, 2003, 262:291 ~ 307;
[52]
Kijeswski T, Kareem A. Wavelet Transform for System Identification in Civil Engineering Computer Aided Civil and Infrastructure Engineering.2003, 18:339 ~ 355;
[53]
Zhang Z Y, Hua H X, Xu X Z, Huang Z. Modal Parameter Identification through Gabor Expansion of Reponse Signals. Journal of Sound and Vibration, 2003, 266(5) :943 ~ 955;
[54]
oseph Lardies, Stephane Gouttbroze. Identification of Modal Parameters Using the Wavelet Transform. International Journal of Mechanical Sciences, 2002, 44: 2 263 ~ 2 283;
[55]
Yoshihiro Kitada, Identification of Nonlinear Structural Dynamic Systems Using Wavelets. Journal of Engineering Mechanics, 1998, 124(10) :1059~1066;
[56]
Ghanem R, Romeo F. A Wavelet-Based Approach for the Identification of Linear Time-Varying Dynamical Systems. Journal of Sound and Vibration, 2000, 234(4) :555 ~ 576;
[57]
Ghanem R, Romeo F. A Wavelet-Based Approach for Model and Parameter Identification of Non-Linear Systems. International Journal of Non-Linear Mechanics, 2001,36: 835 ~ 859;