全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工业建筑  2009 

基于加权残值法和统一强度理论抗滑桩合理锚固深度的确定方法

DOI: 10.13204/j.gyjz200901018, PP. 85-89

Keywords: 抗滑桩,统一强度理论,锚固深度,桩侧抗力,加权残值法

Full-Text   Cite this paper   Add to My Lib

Abstract:

引入统一强度理论以考虑中主应力的影响,推导出抗滑桩锚固段桩侧土容许抗力计算公式。同时,利用半解析半数值的加权残值法计算抗滑桩锚固段桩侧所需抗力,并提出一种合理确定抗滑桩锚固深度的新方法。将提出的方法应用于两个计算实例,得到桩侧所需抗力的分布和不同统一强度参数下桩侧土容许抗力值的分布,并通过两者的对比分析确定合理锚固深度。计算结果表明,采用统一强度理论分析计算得到的桩侧土容许抗力随统一强度参数b的增大而增大。

References

[1]  铁道部第二勘测设计院. 抗滑桩设计与计算[M]. 北京: 中国铁道出版社, 1983.
[2]  王恭先. 抗滑支挡建筑物的发展动向[G].//滑坡文集(第十三集). 北京: 中国铁道出版社, 1998: 60-64.
[3]  张友良, 冯夏庭, 范建海, 等. 抗滑桩与滑坡体相互作用的研究[J]. 岩石力学与工程学报, 2002, 21(6): 839-842.
[4]  周志刚. 土层抗滑桩锚固深度探讨[J]. 路基工程, 1997 (3): 31-35.
[5]  张文居, 赵其华, 刘晶晶. 参数变异性对抗滑桩锚固深度可靠度的影响分析[J]. 水文地质工程地质, 2006 (3): 61-63.
[6]  蒋建国, 邹银生, 周绪红. 刚性抗滑桩锚固深度的简化计算[J]. 工程力学, 2001(增刊): 457-460.
[7]  胡晓军, 王建国. 基于强度折减的刚性抗滑桩锚固深度确定[J]. 土木工程学报, 2007, 40(1): 65-68.
[8]  年廷凯, 栾茂田, 郑德凤, 等. 抗滑桩锚固深度的极限分析下限方法[J]. 水利学报, 2007, 38(6): 743-748.
[9]  周春梅, 殷坤龙. 三峡库区滑坡治理中抗滑桩锚固深度的研究[J]. 武汉理工大学学报, 2006, 28(2) : 38- 41.
[10]  龚晓南. 土塑性力学[M]. 杭州: 浙江大学出版社, 1999.
[11]  YuMaohong, He Linan. A New Model and Theory on Yield and Failure of Materials Under Complex Stress State[G].//Jono M, Inoue T. Mechanical Behaviour of Materials Ⅵ. Oxford: Pergamon Press, 1991.
[12]  俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 14(2): 1-10.
[13]  Lee Y K, Ghosh J. The Significance of J3 to the Prediction of Shear Bands[J]. International Journal of Plasticity, 1996, 12 (9): 1179-1197.
[14]  戴自航. 抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J]. 岩石力学与工程学报, 2002, 21(4): 517-52.
[15]  徐次达, 陈学潮, 郑瑞芬. 新计算力学加权残值法[M]. 上海: 同济大学出版社, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133