全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2013 

含风电场的互联电力系统备用容量优化

, PP. 3067-3072

Keywords: 互联电力系统,备用容量,机会约束规划,遗传算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对风电并网所带来的电力系统备用容量需求增大的问题,提出了含风电场的互联电力系统备用容量优化模型。在机会约束规划的框架下,以互联系统备用容量最小为目标,综合考虑风电出力和负荷预测偏差、发电机组故障停运等不确定因素,建立了计及各子系统备用资源特点的机会约束模型,并量化了共享备用的容量和调用过程;采用基于Monte-Carlo随机模拟的遗传算法对模型进行求解。算例分析结果表明,该方法能够在保证系统安全稳定的前提下,有效降低系统备用容量配置。

References

[1]  周双喜,鲁宗相.风力发电与电力系统[M].北京:中国电力出版社,2011:390-422.
[2]  李智,张新松,郭晓丽.大规模风电接入火电系统的最优旋转备用容量研究[J].电力系统自动化,2012,40(13):110-114.Li Zhi,Zhang Xinsong,Guo Xiaoli.Study on the optimal spinning reserve in thermal power system with significant wind power penetration[J].Power System Protection and Control,2012,40(13):110-114(in Chinese).
[3]  舒隽,李春晓,苏济归,等.复杂预想场景下电力系统备用优化模型[J].中国电机工程学报,2012,32(10):105-110.Shu Jun,Li Chunxiao,Su Jigui,et a1.Optimal reserve dispatch model considering complicated contingency scenarios[J].Proceedings of the CSEE,2012,32(10):105-110(in Chinese).
[4]  向萌,张紫凡,焦茜茜.多场景概率机组组合在含风电系统中的备用协调优化[J].电网与清洁能源,2012,28(5):61-68.Xiang Meng,Zhang Zifan,Jiao Qianqian.Optimization of reserve coordination in the multi-scenario probability unit commitment for wind power integration[J].Power System and Clean Energy,2012,28(5):61-68(in Chinese).
[5]  张国强,吴文传,张伯明.考虑风电接入的有功备用协调优化[J].电力系统自动化,2012,40(13):110-114.Zhang Guoqiang,Wu Wenchuan,Zhang Boming.Optimization of operation reserve coordination considering wind power integration[J].Automation of Electric Power Systems,2012,40(13):110-114(in Chinese).
[6]  张国强,张伯明.考虑风电接入后二次备用需求的优化潮流算法[J].电力系统自动化,2009,33(8): 25-28.Zhang Guoqiang,Zhang Boming.Optimal power flow approach considering secondary reserve demand with wind power integration[J].Automation of Electric Power Systems,2009,33(8):25-28(in Chinese).
[7]  王乐,余志伟,文福拴.基于机会约束规划的最优旋转备用容量确定[J].电网技术,2006,30(20):14-19.Wang Le,Yu Zhiwei,Wen Fushuan.A chance-constrained programming approach to determine requirement of optimal spinning reserve capacity[J].Power System Technology,2006,30(20):14-19(in Chinese).
[8]  Doherty R,Malley M O.A new approach to quantify reserve demand in systems with significant installed wind capacity[J].IEEE Transactions on Power Systems,2000,15(14):1410-1416.
[9]  葛矩,王飞,张粒子.含风电场电力系统旋转备用获取模型[J].电力系统自动化,2010,34(6):32-35.Ge Ju,Wang Fei,Zhang Lizi.Spinning reserve model in the wind power integrated power system[J].Automation of Electric Power Systems,2010,34(6):32-35(in Chinese).
[10]  谢国辉,张粒子,葛炬.节能发电调度旋转备用计划优化[J].电力系统自动化,2009,33(13):43-46.Xie Guohui,Zhang Lizi,Ge Ju.Optimization of spinning reserve scheduling of energy-saving generation dispatching[J].Automation of Electric Power Systems,2009,33(13):43-46(in Chinese).
[11]  王建学,王锡凡,丁晓莺.区域电力市场中的分区备用模型[J].中国电机工程学报,2006,26(18):28-33.Wang Jianxue,Wang Xifan,Ding Xiaoying.Study on zonal reserve model in power market[J].Proceedings of the CSEE,2006, 26(18):28-33(in Chinese).
[12]  赵学顺,文福拴,汪振,等.区域电力市场运行备用容量的确定和获取初探[J].电力系统自动化,2004,28(13):7-12.Zhao Xueshun,Wen Fushuan,Wang Zhen,et a1.A preliminary investigation on determination and procurement of operating reserve capacity in regional electricity market[J].Automation of Electric Power Systems,2004,28(13):7-12(in Chinese).
[13]  吴杰康,史美娟,陈国通,等.区域电力系统最优备用容量模型与算法[J].中国电机工程学报,2009,29(1):14-20.Wu Jiekang,Shi Meijuan,Chen Guotong,et al.Immune genetic algorithms for modeling optimal reserve capacity of interconnected regional power systems[J].Proceedings of the CSEE,2009,29(1):14-20(in Chinese).
[14]  吴杰康,史美娟,陈国通,等.基于Multi-AIGA算法的区域电力系统最优备用模型[J].电力系统及其自动化学报,2008,20(2):51-56. Wu Jiekang,Shi Meijuan,Chen Guotong,et a1.Optimal reserve modeling of regional power system based on multi-AIGA [J].Proceeding of the CSU-EPSA,2008,20(2):51-56(in Chinese).
[15]  贾燕冰,严正,孙勇.互联电网共享运行备用可靠性评估[J].电力系统自动化,2009,33(16):13-18.Jia Yanbing,Yan Zheng,Sun Yong.Shareable operational reserve reliability evaluation for multi-area power networks[J].Automation of Electric Power Systems,2009,33(16):13-18(in Chinese).
[16]  赵宝碇,赵瑞清.随机规划与模糊规划[M].北京:清华大学出版社,1998:74-94

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133