全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2015 

基于哈密尔顿系统与辛算法的暂态稳定约束最优潮流

DOI: 10.13335/j.1000-3673.pst.2015.05.024, PP. 1329-1336

Keywords: 最优潮流,暂态稳定,辛算法,内点法,哈密尔顿系统,辛高斯-勒让德-龙格库塔法

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种暂态稳定约束最优潮流的哈密尔顿模型,采用哈密尔顿系统的辛算法(symplecticalgorithm)进行求解。将发电机转子运动方程转换为哈密尔顿系统的正则方程,用四阶辛Gauss-LegendreRunge-Kutta(GLRK)方法对其离散化,实现了大规模系统暂态稳定约束最优潮流的快速求解。辛GLRK方法具有很好的数值稳定性和保结构特性,相同精度时,计算步长可达隐式梯形法的6倍;大步长计算时仍具有较高的数值精度。某省3301节点,236机等5个系统的仿真结果表明所提模型在高阶离散辛框架下具有很高的数值稳定性,即便采用大步长也可保持较高的数值精度,能提高计算速度10倍以上,具有很好的应用前景。

References

[1]  Okunbor D,Djoleto W,Crow M.Transient stability analysis using symplectic integrators[J].WSEAS Transactions on Mathematics,2004,3(3):595-601.
[2]  Feng K.The calculus of generating functions and the formal energy for Hamiltonian algorithms[J].Journal of Computational Mathematics,1998,16(6):481-498.
[3]  Wei H,Sasaki H,Kubokawa J,et al.An interior point nonlinear programming for optimal power flow problems with a novel data structure[J].IEEE Transactions on Power Systems,1998,13(3):870-877.
[4]  Biegler L T,Nocedal J,Schmid C.A reduced Hessian method for large-scale constrained optimization[J].SIAM J Optim,1995,5(2):1-36.
[5]  Gan Deqiang,Thomas R J,Zimmerman R D.Stability-constrained optimal power flow[J].IEEE Transactions on Power Systems,2000,15(2):535-540.
[6]  袁越,久保川淳司,佐佐木博司,等.基于内点法的含暂态稳定约束的最优潮流计算[J].电力系统自动化,2002,26(13):13-18.Yuan Yue,Kubodawa Junji,Sasaki Hiroshi,et al.Interior point method based on optimal power flow with transient stability constraints[J].Automation of Electric Power Systems,2002,26(13):13-18(in Chinese).
[7]  Yuan Y,Kubokawa J,Sasaki H.A solution of optimal power flow with multicontingency transient stability constraints[J].IEEE Transactions on Power Systems,2003,18(3):1094-1102.
[8]  韦化,阳育德,李啸骢.多预想故障暂态稳定约束最优潮流[J].中国电机工程学报,2004,24(10):91-96.Wei Hua,Yang Yude,Li Xiaocong.Optimal power flow with multi-contingencies transient stability constrained[J].Proceeding of the CSEE,2004,24(10):91-96(in Chinese).
[9]  Jiang Q Y,Geng G C.A reduced-space interior point method for transient stability constrained optimal power flow[J].IEEE Transactions on Power Systems,2010,25(3):1232-1240.
[10]  潮铸,刘明波.基于2阶轨迹灵敏度的暂态稳定约束最优潮流计算[J].电网技术,2011,35(7):106-112.Chao Zhu,Liu Mingbo.Transient stability constrained optimal power flow calculation based on second-order trajectory sensitivity[J].Power System Technology,2011,35(7):106-112(in Chinese).
[11]  Zarate-Minano R,Cutsem T V,Milano F,et al.Securing transient stability using time-domain simulations within an optimal power flow[J].IEEE Transactions on Power Systems,2010,25(1):243-253.
[12]  Zarate-Minano R,Fuerte-Esquivel C R,Zamora-Cárdenas E,et al.Selective transient stability-constrained optimal power flow using a SIME and trajectory sensitivity unified analysis[J].Electric Power Systems Research,2014,109:32-44.
[13]  Xiaoping Tu,Louis A Dessaint,Huy Nguyen-Duc.Transient stability constrained optimal power flow using independent dynamic simulation[J].IET Gener Transm Distrib,2013,7(3):244-253.
[14]  吴艳娟,李林川.基于暂态能量裕度灵敏度计及暂态稳定约束的优化潮流计算[J].电网技术,2005,29(15):28-33.Wu Yanjuan,Li Linchuan.Transient stability constrained optimal power flow based on sensitivity of transient energy margin[J].Power System Technology,2005,29(15):28-33(in Chinese).
[15]  冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003:7-14.
[16]  Feng K.On difference schemes and symplectic geometry[C]//Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations.Beijing:Science Press,1985:42-58.
[17]  卢强,梅生伟.面向21世纪的电力系统重大基础研究[J].自然科学进展,2000,10(10):870-876.Lu Qiang,Mei Shengwei.Important basic researches on power systems facing 21 century[J].Natural Science Development,2000,10(10):870-876(in Chinese).
[18]  余德浩.有限元、自然边界元与辛几何算法[J].高等数学研究,2001,4(4):5-10.Yu Dehao.Finite element methods,natural boundary element method,and simplectic algorithms[J].Studies in College Mathematics,2001,4(4):5-10(in Chinese).
[19]  Buchter J C.Implicit Runge-Kutta processes[J].Math,Comp,1964(18):50-64.
[20]  Sanz-Serna J M.Runge-Kutta schemes for Hamiltonian systems[J].BIT,1988(28):877-883.
[21]  倪以信,陈寿松,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002:147-151.
[22]  李寿佛.刚性常微分方程及刚性泛函微分方程的数值分析[M].湘潭:湘潭大学出版社,1998:187-213.
[23]  Sauer P W,Pai M A.Power system dynamics and stability[M].Upper Saddle River,NJ:Prentice-Hall,1998:13-48.
[24]  Vittal V,Michel A N,Fouad A A.Power system transient stability analysis:formulation as nearly Hamiltonian systems[J].Circuits, Systems and Signal Processing,1984,3(1):105-122.
[25]  Davis T A.Direct methods for sparse linear systems[M].Philadelphia,PA:SIAM,2006:169-186.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133