全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2015 

基于谱聚类和优化极端学习机的超短期风速预测

DOI: 10.13335/j.1000-3673.pst.2015.05.021, PP. 1307-1314

Keywords: 超短期风速预测,谱聚类,极端学习机

Full-Text   Cite this paper   Add to My Lib

Abstract:

较高精度的超短期风速预测是并网运行风电场风电功率预测预报系统建立和运行的必要前提及保证。由于风速影响因素众多,具有较大的波动性和随机性,并具有高度的自相关性,给传统的风速预测方法带来了极大的挑战。提出一种基于谱聚类和极端学习机的超短期风速预测方法。该方法首先利用小波变换和主成分分析对风速数据进行去噪和降维处理,剔除数据的不规则波动,有效降低数据维度;然后分别应用谱聚类对小波变换后的各分解序列进行聚类分析,减少训练样本空间,提高样本有效性,降低计算复杂度;再应用极端学习机对各分解序列分别进行训练,同时通过遗传算法对极端学习机输入权值、偏置等参数进行优化,确保各分解序列输出最佳预测模型;最后将各分解序列预测结果相加得到最终预测结果。以某风电场实际数据进行的建模结果表明该模型有效实现了对风速的超短期、多步预测,采用的方法合理有效。

References

[1]  Catalão J P S,Pousinho H M I,Mendes V M F.Short-term wind power forecasting in Portugal by neural networks and wavelet transform[J].Renewable Energy,2011,36(4):1245-1251.
[2]  Liu Da,Niu Dongxiao,Wang Hui,et al.Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm[J].Renewable Energy,2014(62):592-597.
[3]  王晓兰,王明伟.基于小波分解和最小二乘支持向量机的短期风速预测[J].电网技术,2010,34(1):179-184.Wang Xiaolan,Wang Mingwei,Short-term wind speed forecasting based on wavelet decomposition and least square support vector machine[J].Power System Technology,2010,34(1):179-184(in Chinese).
[4]  Hui Liu,Hongqi Tian,Difu Pan,et al.Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks[J].Applied Energy,2013,6(107):191-208.
[5]  Skittides C,Früh W G.Wind forecasting using principal component analysis[J].Renewable Energy,2014(69):365-374.
[6]  尹东阳,盛义发,蒋明洁,等.基于粗糙集理论-主成分分析的Elman神经网络短期风速预测[J].电力系统保护与控制,2014,42(11):46-51.Yin Dongyang,Sheng Yifa,Jiang Mingjie,et al.Short-term wind speed forecasting using Elman neural network based on rough set theory and principal components analysis[J].Power System Protection and Control,2014,42(11):46-51(in Chinese).
[7]  Chávez-Arroyo R,Lozano-Galiana S,Sanz-Rodrigo J,et al.On the application of principal component analysis for accurate statistical-dynamical downscaling of wind fields[J].Energy Procedia,2013(40):67-76.
[8]  Yang X,Sun B,Zhang X,et al.Short-term wind speed forecasting based on support vector machine with similar data[J].Proceedings of the CSEE,2012,32(4):35-41.
[9]  Chen Y,Luh P B,Guan C,et al.Short-term load forecasting:similar day-based wavelet neural networks[J].IEEE Transactions on Power Systems,2010,25(1):322-330.
[10]  Fiedler M.Algebraic connectivity of graphs[J].Czechoslovak Mathematical Journal,1973,23(2):298-305.
[11]  Malik J,Belongie S,Leung T,et al.Contour and texture analysis for image segmentation[J].International Journal of Computer Vision,2001,43(1):7-27.
[12]  Weiss Y.Segmentation using eigenvectors:a unifying view[C]//The Proceedings of the seventh IEEE International Conference on.Kerkyra:IEEE,1999:975-982.
[13]  Dhanjal C,Gaudel R,Clémençon S.Efficient eigen-updating for spectral graph clustering[J].Neurocomputing,2014(131):440-452.
[14]  Liu H,Zhao F,Jiao L.Fuzzy spectral clustering with robust spatial information for image segmentation[J].Applied Soft Computing,2012,12(11):3636-3647.
[15]  Kavasseri R G,Seetharaman K.Day-ahead wind speed forecasting using f-ARIMA models[J].Renewable Energy,2009,34(5):1388-1393.
[16]  Liu H,Tian H,Li Y.Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[J].Applied Energy,2012(98):415-424.
[17]  蔡凯,谭伦农,李春林,等.时间序列与神经网络法相结合的短期风速预测[J].电网技术,2008,32(8):82-85.Cai Kai,Tan Lunnong,Li Chunlin,et al.Short-time wind speed forecasting combing time series and neural network method[J].Power System Technology,2008,32(8):82-85(in Chinese).
[18]  吴俊利,张步涵,王魁.基于Adaboost的BP神经网络改进算法在短期风速预测中的应用[J].电网技术,2012,36(9):221-225.Wu Junli,Zhang Buhan,Wang Kui.Application of adaboost-based BP neural network for short-term wind speed forecast[J].Power System Technology,2012,36(9):221-225(in Chinese).
[19]  Catalão J P S,Pousinho H M I,Mendes V M F.Short-term wind power forecasting in Portugal by neural networks and wavelet transform[J].Renewable Energy,2011,36(4):1245-1251.
[20]  Sun Y,Li L L,Huang X S,et al.Short-term wind speed forecasting based on optimizated support vector machine[J].Applied Mechanics and Materials,2013(300):189-194.
[21]  Huang G B,Zhu Q Y,Siew C K.Extreme learning machine : theory and applications[J].Neurocomputing,2006,70(1-3):489-501.
[22]  Huang G B,Wang D H,Lan Y.Extreme learning machines:a survey[J].International Journal of Machine Learning and Cybernetics.2011,2(2):107-122.
[23]  Minhas R,Mohammed A A,Wu Q M J.A fast recognition framework based on extreme learning machine using hybrid object information[J].Neurocomputing,2010(73):1831-1839.
[24]  Hongming Yang,JunYi,Junhua Zhao,et al.Extreme learning machine based genetic algorithm and its application in power system economic dispatch[J].Neurocomputing,2013(102):154-162.
[25]  杨洪明,黄拉,何纯芳,等.冰风暴灾害下输电线路故障概率预测[J].电网技术,2012,36(4):213-218.Yang Hongming,Huang La,He Chunfang,et al.Probabilistic prediction of transmission line fault resulted from disaster of ice storm[J].Power System Technology,2012,36(4):213-218.
[26]  Grossmann A,Morlet J.Decomposition of hardy functions into square integrable wavelets of constant shape[J].SIAM Journal on Mathematical Analysis,1984,15(4):723-736.
[27]  Pearson K.On lines and planes of closest fit to systems of points in space [J].Philosophical Magazine,1901,2(6):559-572.
[28]  Matias T,Souza F,Araújo R,et al.Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine[J].Neurocomputing,2014(129):428-436.
[29]  Shi J,Malik J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
[30]  Ng A Y,Jordan M I,Weiss Y.On spectral clustering:analysis and an algorithm[J].Proceedings of Advances in Neural Information Processing Systems,2001(14):849-856.
[31]  Liang N Y,Huang G B,Saratchandran P,et al.A fast and accurate on-line sequential learning algorithm for feedforward networks[J].IEEE Transactions on Neural Networks,2006,17(6):1411-1423.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133