Catalão J P S,Pousinho H M I,Mendes V M F.Short-term wind power forecasting in Portugal by neural networks and wavelet transform[J].Renewable Energy,2011,36(4):1245-1251.
[2]
Liu Da,Niu Dongxiao,Wang Hui,et al.Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm[J].Renewable Energy,2014(62):592-597.
[3]
王晓兰,王明伟.基于小波分解和最小二乘支持向量机的短期风速预测[J].电网技术,2010,34(1):179-184.Wang Xiaolan,Wang Mingwei,Short-term wind speed forecasting based on wavelet decomposition and least square support vector machine[J].Power System Technology,2010,34(1):179-184(in Chinese).
[4]
Hui Liu,Hongqi Tian,Difu Pan,et al.Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks[J].Applied Energy,2013,6(107):191-208.
[5]
Skittides C,Früh W G.Wind forecasting using principal component analysis[J].Renewable Energy,2014(69):365-374.
[6]
尹东阳,盛义发,蒋明洁,等.基于粗糙集理论-主成分分析的Elman神经网络短期风速预测[J].电力系统保护与控制,2014,42(11):46-51.Yin Dongyang,Sheng Yifa,Jiang Mingjie,et al.Short-term wind speed forecasting using Elman neural network based on rough set theory and principal components analysis[J].Power System Protection and Control,2014,42(11):46-51(in Chinese).
[7]
Chávez-Arroyo R,Lozano-Galiana S,Sanz-Rodrigo J,et al.On the application of principal component analysis for accurate statistical-dynamical downscaling of wind fields[J].Energy Procedia,2013(40):67-76.
[8]
Yang X,Sun B,Zhang X,et al.Short-term wind speed forecasting based on support vector machine with similar data[J].Proceedings of the CSEE,2012,32(4):35-41.
[9]
Chen Y,Luh P B,Guan C,et al.Short-term load forecasting:similar day-based wavelet neural networks[J].IEEE Transactions on Power Systems,2010,25(1):322-330.
[10]
Fiedler M.Algebraic connectivity of graphs[J].Czechoslovak Mathematical Journal,1973,23(2):298-305.
[11]
Malik J,Belongie S,Leung T,et al.Contour and texture analysis for image segmentation[J].International Journal of Computer Vision,2001,43(1):7-27.
[12]
Weiss Y.Segmentation using eigenvectors:a unifying view[C]//The Proceedings of the seventh IEEE International Conference on.Kerkyra:IEEE,1999:975-982.
[13]
Dhanjal C,Gaudel R,Clémençon S.Efficient eigen-updating for spectral graph clustering[J].Neurocomputing,2014(131):440-452.
[14]
Liu H,Zhao F,Jiao L.Fuzzy spectral clustering with robust spatial information for image segmentation[J].Applied Soft Computing,2012,12(11):3636-3647.
[15]
Kavasseri R G,Seetharaman K.Day-ahead wind speed forecasting using f-ARIMA models[J].Renewable Energy,2009,34(5):1388-1393.
[16]
Liu H,Tian H,Li Y.Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[J].Applied Energy,2012(98):415-424.
[17]
蔡凯,谭伦农,李春林,等.时间序列与神经网络法相结合的短期风速预测[J].电网技术,2008,32(8):82-85.Cai Kai,Tan Lunnong,Li Chunlin,et al.Short-time wind speed forecasting combing time series and neural network method[J].Power System Technology,2008,32(8):82-85(in Chinese).
[18]
吴俊利,张步涵,王魁.基于Adaboost的BP神经网络改进算法在短期风速预测中的应用[J].电网技术,2012,36(9):221-225.Wu Junli,Zhang Buhan,Wang Kui.Application of adaboost-based BP neural network for short-term wind speed forecast[J].Power System Technology,2012,36(9):221-225(in Chinese).
[19]
Catalão J P S,Pousinho H M I,Mendes V M F.Short-term wind power forecasting in Portugal by neural networks and wavelet transform[J].Renewable Energy,2011,36(4):1245-1251.
[20]
Sun Y,Li L L,Huang X S,et al.Short-term wind speed forecasting based on optimizated support vector machine[J].Applied Mechanics and Materials,2013(300):189-194.
[21]
Huang G B,Zhu Q Y,Siew C K.Extreme learning machine : theory and applications[J].Neurocomputing,2006,70(1-3):489-501.
[22]
Huang G B,Wang D H,Lan Y.Extreme learning machines:a survey[J].International Journal of Machine Learning and Cybernetics.2011,2(2):107-122.
[23]
Minhas R,Mohammed A A,Wu Q M J.A fast recognition framework based on extreme learning machine using hybrid object information[J].Neurocomputing,2010(73):1831-1839.
[24]
Hongming Yang,JunYi,Junhua Zhao,et al.Extreme learning machine based genetic algorithm and its application in power system economic dispatch[J].Neurocomputing,2013(102):154-162.
[25]
杨洪明,黄拉,何纯芳,等.冰风暴灾害下输电线路故障概率预测[J].电网技术,2012,36(4):213-218.Yang Hongming,Huang La,He Chunfang,et al.Probabilistic prediction of transmission line fault resulted from disaster of ice storm[J].Power System Technology,2012,36(4):213-218.
[26]
Grossmann A,Morlet J.Decomposition of hardy functions into square integrable wavelets of constant shape[J].SIAM Journal on Mathematical Analysis,1984,15(4):723-736.
[27]
Pearson K.On lines and planes of closest fit to systems of points in space [J].Philosophical Magazine,1901,2(6):559-572.
[28]
Matias T,Souza F,Araújo R,et al.Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine[J].Neurocomputing,2014(129):428-436.
[29]
Shi J,Malik J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
[30]
Ng A Y,Jordan M I,Weiss Y.On spectral clustering:analysis and an algorithm[J].Proceedings of Advances in Neural Information Processing Systems,2001(14):849-856.
[31]
Liang N Y,Huang G B,Saratchandran P,et al.A fast and accurate on-line sequential learning algorithm for feedforward networks[J].IEEE Transactions on Neural Networks,2006,17(6):1411-1423.