全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2011 

基于诱导有序加权平均算子的最优组合短期负荷预测

, PP. 177-182

Keywords: 负荷预测,组合预测,优化模型,诱导有序加权平均算子

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高预测精度,弥补现有组合预测方法中单项预测方法在各预测点的加权系数恒定等不足,提出了一种新的组合预测方法——基于诱导有序加权平均算子(inducedorderedweightedaveragingoperator,IOWA)的短期负荷最优组合预测方法。该方法针对同一预测方法在不同时刻的预测效果不同,按照各单项方法在不同时刻预测精度的高低进行有序赋权,实现方法的优缺点互补,降低预测结果对某一方法的依赖性,达到提高预测精度的目的。文中基于IOWA算子的组合预测方法,建立相应的确定权系数的优化模型,给出采用现代内点法解算该优化模型的过程及步骤。实际应用结果表明,该方法能有效提高组合预测精度且计算时间短。

References

[1]  龙瑞华,毛弋,毛李帆,等.基于诱导有序加权平均算子和马尔可夫链的中长期电力负荷组合预测模型[J].电网技术,2010,34(3):150-156.
[2]  Long Ruihua,Mao Yi,Mao Lifan,et al.A combination model for medium-and long-term load forecasting based on induced ordered weighted averaging operator and Markov chain[J].Power System Technology,2010,34(3):150-156(in Chinese).
[3]  李蔚,盛德仁,陈坚红,等.双重BP神经网络组合模型在实时数据预测中的应用[J].中国电机工程学报,2007,27(17):94-97.
[4]  Li Wei,Sheng Deren,Chen Jianhong,et al.The application of double BP neural network combined forecasting model in real-time data predicting[J].Proceedings of the CSEE,2007,27(17):94-97(in Chinese).
[5]  Yager R R.Induced aggregation operators[J].Fuzzy Sets and Systems,2003(137):59-69.
[6]  陈华友,蔡正高.诱导有序加权平均的组合预测模型及其应用[J].安徽大学学报:自然科学版,2005,29(1):1-6.
[7]  Chen Huayou,Cai Zhenggao.Combined forecasting model based on induced ordered weighted averaging operator and its application[J].Journal of Anhui University:Natural Science Edition,2005,29(1):1-6(in Chinese).
[8]  陈华友,陈启明,李洪岩.一类基于OWA算子的组合预测模型及性质[J].运筹与管理,2006,15(6):34-39.
[9]  Chen Huayou,Chen Qiming,Li Hongyan.A kind of combination forecasting model and its properties based on ordered weighted averaging (OWA) operator[J].Operations Research and Management Science,2006,15(6):34-39(in Chinese).
[10]  陈华友,刘春林.基于IOWA算子的组合预测方法[J].预测,2003,22(6):61-65.
[11]  Chen Huayou,Liu Chunlin.A kind of combination forecasting method based on induced ordered weighted averaging (IOWA) oprators[J].Forecasting,2003,22(6):61-65(in Chinese).
[12]  黎静华,韦化.基于内点法的机组组合模型[J].电网技术,2007,31(24):28-34.
[13]  栗然,刘宇,黎静华,等.基于改进决策树算法的日特征负荷预测研究[J].中国电机工程学报,2005,25(23):36-41.
[14]  Li Ran,Liu Yu,Li Jinghua,et al.Study on the daily characteristic load forecasting based on the optimized algorithm of decision tree[J].Proceedings of the CSEE,2005,25(23):36-41(in Chinese).
[15]  黎静华,栗然,顾雪平,等.网格化的电力系统短期负荷预测的MDRBR模型[J].电力系统自动化,2005,29(24):27-31.
[16]  Li Jinghua,Li Ran,Gu Xueping,et al.Grid model for short-term load forecasting based on MDRBR algorithm[J].Automation of Electric Power Systems,2005,29(24):27-31(in Chinese).
[17]  黎静华,栗然,牛东晓.基于粗糙集的默认规则挖掘算法在电力系统短期负荷预测中的应用[J].电网技术,2006,30(5):18-23.
[18]  Li Jinghua,Li Ran,Niu Dongxiao.Application of mining default rules based on rough set in power system short-term load forecasting [J].Power System Technology,2006,30(5):18-23(in Chinese).
[19]  陈刚,周杰,张雪君,等.基于BP与RBF级联神经网络的日负荷预测[J].电网技术,2009,33(12):101-105.
[20]  Chen Gang,Zhou Jie,Zhang Xuejun,et al.A daily load forecasting method based on cascaded back propagation and radial basis function neural networks[J].Power System Technology,2009,33(12):101-105(in Chinese).
[21]  周建中,张亚超,李清清,等.基于动态自适应径向基函数网络的概率性短期负荷预测[J].电网技术,2010,34(3):37-41.
[22]  Zhou Jianzhong,Zhang Yachao,Li Qingqing,et al.Probabilistic short-term load forecasting based on dynamic self-adaptive redial basis function network[J].Power System Technology,2010,34(3):37-41(in Chinese).
[23]  唐杰明,刘俊勇,杨可,等.基于灰色模型和最小二乘支持向量机的电力短期负荷组合预测[J].电网技术,2009,33(3):63-68.
[24]  Tang Jieming,Liu Junyong,Yang Ke,et al.Short-term load combination forecasting by grey model and least square support vector machine[J].Power System Technology,2009,33(3):63-68(in Chinese).
[25]  牛东晓,陈志业,刑棉.具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型[J].中国电机工程学报,2002,22(1):29-32.
[26]  Niu Dongxiao,Chen Zhiye,Xing Main.Combined optimum gray neural network model of the seasonal power load forecasting with the double trends[J].Proceedings of the CSEE,2002,22(1):29-32(in Chinese).
[27]  丁巧林,潘学华,杨薛明.最优组合预测方法在电力负荷预测中的应用[J].电网技术,2008,32(13):127-130.
[28]  Ding Qiaolin,Pan Xuehua,Yang Xueming.Optimal combined forecasting method used in power load forecasting[J].Power System Technology,2008,32(13):127-130(in Chinese).
[29]  Wei H,Sasaki H,Kubokawa J,et al.A interior point nonlinear programming for optimal power flow problems with a novel data structure[J].IEEE Trans on Power Systems,1998,13(3):870-877.
[30]  Li Jinghua,Wei Hua.A unit commitment model based on interiror point method[J].Power System Technology,2007,31(24):28-34(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133