全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2011 

基于最小二乘支持向量机的改进型GIS局部放电识别方法

, PP. 178-182

Keywords: 气体绝缘组合电器,等效时频法,模糊C-均值聚类法,最小二乘支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用最小二乘支持向量机(leastsquare-supportvectormachine,LS-SVM)的方法识别气体绝缘组合电器局部放电的类型。在信号的快速分类后利用相位分布的局部放电特征谱图的特征参数作为LS-SVM识别放电类型的依据;信号快速分类处理部分主要包括信号时间-频率特性提取部分和模糊C-均值聚类2大部分,它们把信号的时间-频率点群分为由若干具有相似信号组成的信号子群。仿真实验表明该方法可有效地应对设备情况复杂的场合且有效回避传统神经网络识别受初始值影响较大、维数过高等一系列问题。

References

[1]  Li Yanqing,Chen Zhiye,Lü Fangcheng,et al.Pattern recognition of transformer partial discharges based on acoustic method[J].Proceedings of the CSEE,2003,23(2):108-111(in Chinese).
[2]  Jiang Lei,Zhu Deheng,Li Fuqi,et al.ANN based discharge pattern recognition of insulation mothered of electrical transformers [J].Proceedings of the CSEE,2001,21(1):21-24(in Chinese).
[3]  张林,刘先珊,阴和俊.基于时间序列的支持向量机在负荷预测中的应用[J].电网技术,2004,28(19):38-41.
[4]  Zhang Lin,Liu Xianshan,Yin Hejun.Application of support vector machines based on time sequence in power system load forecasting[J].Power System Technology,2004,28(19):38-41(in Chinese).
[5]  Haykin S.叶世伟,译.神经网络原理[M].北京:机械工业出版社,2004:229-250.
[6]  刘开培,周莉,马秉伟.基于支持向量机的间接谐波检测极其在LabVIEW平台实现[J].电网技术,2006,30(5):76-80.
[7]  Liu Kaipei,Zhou Li,Ma Bingwei.Inter harmonic detection based on regressive type of support vector machine and its realization on platform of Labview[J].Power System Technology,2006,30(5):76-80(in Chinese).
[8]  王国利,郝艳捧,袁鹏,等.变压器局部放电超高频检测中的混频技术研究[J].中国电机工程学报,2004,24(10):115-120.
[9]  Wang Guoli,HaoYanpeng,Yuan Peng,et al.Application of frequency mixing technique to ultra high frequency PD detection for transformers[J].Proceedings of the CSEE,2004,24(10):115-120(in Chinese).
[10]  李燕青,陈志业,律方成,等.超声波法进行变压器局部放电模式识别的研究[J].中国电机工程学报,2003,23(2):108-111.
[11]  杜柏学,魏国忠.基于小波即分形理论的电力设备局部放电模式识别[J].电网技术,2006,30(13):76-80.
[12]  Du Boxue,Wei Guozhong.Partial discharge classification based on wavelet and fractal theory[J].Power System Technology,2006,30(13):76-80(in Chinese).
[13]  司文荣,李军浩,袁鹏,等.气体绝缘组合电器多局部放电源的检测与识别[J].中国电机工程学报,2009,29(16):119-126.
[14]  Si Wenrong,Li Junhao,Yuan Peng,et al Detection and identification techniques for multi-PD source in GIS[J].Proceedings of the CSEE,2009,29(16):119-126(in Chinese).
[15]  张卫华,孙浩,董瑞娟.基于最小二乘支持向量机的交通安全预测模型[J].系统管理学报,2009,18(6):706-710.
[16]  Zhang Weihua,Sun Hao,Dong Ruijuan.Research on prediction model of traffic safety using least square support vector machine[J].Journal of Systems & Management,2009,18(6):706-710(in Chinese).
[17]  唐杰明,刘俊勇,杨可,等.基于灰色模型和最小二乘支持向量机的电力短期负荷组合预测[J].电网技术,2009,33(3):63-68.
[18]  Tang Jieming,Liu Junyong,Yang Ke,et al.Short-term load combination forecasting by Grey model and least square support vector machine[J].Power System Technology,2009,33(3):63-68(in Chinese).
[19]  IEC 270—2000 High-voltage test techniques-partial discharge measurements[S].
[20]  司文荣,李军浩,黎大健,等.基于宽带检测的局放脉冲波形快速特征提取技术[J].电工电能新技术,2008,27(2):21-25.
[21]  Si Wenrong,Li Junhao,Li Dajian,et al.Fast feature extraction technique for PD pulse shape based on wideband detection[J].Advanced Technology of Electrical Engineering and Energy,2008,27(2):21-25(in Chinese).
[22]  Si Wenrong,Li Junhao,Li Yanming,et al.Digital detection grouping and classification of partial discharges signals at DC voltage[J].IEEE Trans. on Dielectrics and Electrical Insulation,2008,15(6):1663-1674.
[23]  Cavallini A,Montanari.G.C,Contin A,et al.A new approach to the diagnosis of solid insulation systems based on PD signal inference[J].IEEE Electrical Insulation Magazine,2003,19(2):23-30.
[24]  Contin A,Cavallini A,Montanari.G.C,et al.Digital detection and fuzzy classification of partial discharge signals[J].IEEE Trans. on Dielectrics and Electrical Insulation,2002,9(2):335-348.
[25]  张承慧,宁勇,姬鹏.一种改进的FCM聚类算法及其在赤潮预测中的应用[J].山东大学学报,2007,37(6):1-4.
[26]  Zhang Chenghui,Ning Yong,Ji Peng.Improved FCM clustering algorithm and its application in red tide prediction[J].Journal of Shandong University,2007,37(6):1-4(in Chinese).
[27]  李柏年.一种改进的C均值聚类算法[J].计算机应用与软件,2008,25(6):98-99.
[28]  Li Bainian.An improved arithmetic of fuzzy C-mean cluster [J].Computer Applications and Software,2008,25(6):98-99(in Chinese).
[29]  王成山,曹旌,陈光远.基于聚类分析的电力系统暂态稳定故障筛选[J].电网技术,2005,29(15):18-22.
[30]  Wang Chengshan,Cao Jing,Chen Guangyuan.Power system transient stability contingency screening based on clustering analysis[J].Power System Technology,2005,29(15):18-22(in Chinese).
[31]  王宏伟,詹荣开,贺汉根.基于模糊聚类的改进模糊辨识方法[J].电子学报,2001,29(4):436-438.
[32]  Wang Hongwei,Zhan Rongkai,He Hangen.Improving fuzzy identifying method based on fuzzy clustering[J].Acta Electronica Sinica,2001,29(4):436-438(in Chinese).
[33]  Bezdek J C,Hathaway R J.Convergence and theory for fuzzy c-means clustering:counterexamples and repairs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,17(5):873- 877.
[34]  周新建,涂宏斌,胡国良.一种用于轴承缺陷图像的改进FCM聚类检测算法[J].铸造技术, 2006,27(12):1395-1399
[35]  Zhou Xinjian,Tu Hongbin,Hu Guoliang.A modified algorithm of image segmentation for bearing scratch defects based on FCM [J].Foundry Technology,2006,27(12):1395-1399(in Chinese) .
[36]  姜磊,朱德恒,李福祺,等.基于人工神经网络的变压器绝缘模型放电模式识别的研究[J].中国电机工程学报,2001,21(1):21-24

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133