全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2012 

应用弱化缓冲算子与最小二乘支持向量机的变压器油中溶解气体浓度预测

, PP. 195-199

Keywords: 电力变压器,溶解气体,最小二乘支持向量机,弱化缓冲算子,区间预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

变压器油中溶解气体浓度是评估油浸式变压器绝缘状态的重要依据。变压器油中溶解气体浓度的时间序列数据具有随机振荡性,往往不能准确把握溶解气体浓度的发展趋势,因此应用缓冲算子首先对原始数据进行弱化处理,减少其随机性。现有溶解气体浓度预测模型仅实现了点预测,为此采用最小二乘支持向量机与区间参数估计理论建立了溶解气体浓度的区间预测模型,确定未来溶解气体浓度在一定置信度下的变化区间。算例结果验证了该模型的有效性。

References

[1]  中国电力科学研究院,辽宁省电力科学研究院,华东电力试验研究院,等.GB 7252—1987 变压器油中溶解气体分析和判断导则[S].北京:电力标准委员会,1987.
[2]  Michel D.A review of faults detectable by gas-in-oil analysis in transformers[J].IEEE Electrical Insulation Magazine,2002,18(3):8-17.
[3]  王有元,廖瑞金,孙才新,等.变压器油中溶解气体浓度灰色预测模型的改进[J].高电压技术,2003,29(4):24-26.
[4]  Wang Youyuan,Liao Ruijin,Sun Caixin,et al.An improved grey prediction model for dissolved gas in transformer oil[J].High Voltage Engineering,2003,29(4):24-26(in Chinese).
[5]  肖燕彩,陈秀海,朱衡君.用改进的灰色多变量模型预测变压器油中溶解气体的浓度[J].电网技术,2006,30(10):86-89.
[6]  刘海涛,黄敏,朱启兵,等.基于支持向量机的不平衡数据分类算法的研究[J].计算机应用研究,2009,26(8):2874-2901.
[7]  Liu Haitao,Huang Min,Zhu Qibing,et al.Imbalance data classification algorithm based on support vector machines [J].Application Research of Computers,2009,26(8):2874-2901(in Chinese).
[8]  李涛,吕勇哉,陈鹏.基于SVM和PSO的新型非线性模型预测控制[J].控制工程,2008,15(S1):102-105.
[9]  Li Tao,Lü Yongzai,Chen Peng.New NMPC based on the integration of SVM and PSO[J].Control Engineering of China,2008,15(S1): 102-105(in Chinese).
[10]  Suykens J A K,Vandewalle J.Least squares support vector machine
[11]  classifiers[J].Neural Processing Letters,1999,9(3):293-300.
[12]  吴正朋,刘思峰,崔立志.基于不动点的新弱化缓冲算子的研究[J].控制与决策,2009,24(12):1805-1809.
[13]  Wu Zhengpeng,Liu Sifeng,Cui Lizhi.Study on new weakening buffer operators[J].Control and Decision,2009,24(12):1805-1809(in Chinese).
[14]  李森,唐孟雄,陈树辉.缓冲算子修正的单桩极限承载力的灰色预测[J].工程力学,2008,25(S1):129-132.
[15]  Li Sen,Tang Mengxiong,Chen Shuhui.Application of gray system theory modified with buffer oprator to determine ultimate bearing capacity of single pile[J].Engineering Mechanics,2008,25(S1):129-132(in Chinese).
[16]  安伟光,孙振明,张辉.预测区间技术在航天器数据处理中的理论与应用研究[J].宇航学报,2006,27(S1):109-112.
[17]  An Weiguang,Sun Zhenming,Zhang Hui.Research on prediction interval technology in applying to spacecraft data processing [J].Journal of Astronautics,2006,27(S1):109-112(in Chinese).
[18]  杨廷方,刘沛,李浙,等.应用新型多方法组合预测模型估计变压器油中溶解气体浓度[J].中国电机工程学报,2008,28(31):108-113.
[19]  Yang Tingfang,Liu Pei,Li Zhe,et al.A new combination forecasting model for concentration prediction of dissolved gases in transformer oil[J].Proceedings of the CSEE,2008,28(31):108-113(in Chinese).
[20]  Xiao Yancai,Chen Xiuhai,Zhu Hengjun.Prediction of gas dissolved in power transformer oil by improved multivariable grey model [J].Power System Technology,2006,30(10):86-89(in Chinese).
[21]  余杰,周浩.变压器油气分析故障的免疫算法诊断模型[J].高电压技术,2006,32(3):49-50.
[22]  Yu Jie,Zhou Hao.Fault diagnosis model of dissolved gas in transformer based on immune algorithm[J].High Voltage Engineering,2006,32(3):49-50(in Chinese).
[23]  王鹏,许涛.用统计学习理论预测变压器油中溶解气体浓度[J].高电压技术,2003,29(11):13-14.
[24]  Wang Peng,Xu Tao.An prediction model for dissolved gas in transformer oil based on statistical learning theory[J].High Voltage Engineering,2003,29(11):13-14(in Chinese).
[25]  王有元,廖瑞金,陈伟根,等.基于油色谱分析的变压器故障在线预测方法[J].重庆大学学报,2005,28(7):34-37.
[26]  Wang Youyuan,Liao Ruijin,Chen Weigen,et al.Online fault predicting method based on dissolved gas analysis for transformer[J].Journal of Chongqing University,2005,28(7):34-37(in Chinese).
[27]  Cortes C,Vapnik V.Support vector networks[J].Machine learning,1995,20(1):273-297.
[28]  肖燕彩,陈秀海,朱衡君.基于最小二乘支持向量机的变压器油中气体浓度预测[J].电网技术,2006,30(11):91-94.
[29]  Xiao Yancai,Chen Xiuhai,Zhu Hengjun.Forecasting of gas concentration in power transformer oil based on least square support vector machine[J].Power System Technology,2006,30(11):91-94(in Chinese).
[30]  Rutkowski L.Generalized regression neural network in time-varying environment[J].Neural Network,2004,15(3):576-596.
[31]  许启发,张世英.Box-Cox-SV模型及其对金融时间序列刻画能力研究[J].系统工程学报,2005,20(4):359-365.
[32]  Xu Qifa,Zhang Shiying.Research on Box-Cox-SV model and its abilities to describe financial time series[J].Journal of Systems Engineering,2005,20(4):359-365(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133