全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2012 

基于改进细菌群体趋药性算法的电力系统无功优化

, PP. 109-114

Keywords: 无功优化,改进BCC算法,无惩罚因子策略,动态调整,变异,映射因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立了无惩罚因子策略的数学模型,并应用改进细菌群体优化(bacterialcolonychemotaxis,BCC)算法进行无功优化。该模型利用可行细菌的占比指导细菌向可行空间搜索或最小网损空间搜索,快速搜索到可行的最优值。在基本BCC算法中引入速度、感知范围的动态调整以及高斯变异机制以提高寻优精度;同时引入映射因子以改善BCC算法解决离散域问题的性能。算例结果表明,改进BCC算法具有较好寻优性能,结合无惩罚因子策略的数学模型能快速得出合理的无功优化策略。。

References

[1]  Huang Wei,Zhang Jianhua,Zhang Cong,et al.Reactive power optimization in power system based on bacterial colony chemotaxis algorithm[J].Automation of Electric Power Systems,2007,31(7):29-33(in Chinese).
[2]  秦四娟.基于改进BCC算法的无功优化分区计算的研究[D].秦皇岛:燕山大学,2010.
[3]  张文,刘玉田.自适应粒子群优化算法及其在无功优化中的应用[J].电网技术,2006,30(8):19-24.
[4]  Zhang Wen,Liu Yutian.Adaptive particle swarm optimization and its application in reactive power optimization[J].Power System Technology,2006,30(8):19-24(in Chinese).
[5]  吴方劼,张承学,段志远.基于动态多种群粒子群算法的无功优化[J].电网技术,2007,31(24):35-39.
[6]  Wu Fangjie,Zhang Chengxue,Duan Zhiyuan.Application of modified particle swarm optimization in reactive power optimization [J].Power System Technology,2007,31(24):35-39(in Chinese).
[7]  BirukT,Yen Gary G.A self adaptive penalty function based algorithm for constrained optimization[C]//2006 IEEE Congress on Evolutionary Computation.Vancouver:IEEE,2006:246-253.
[8]  Pappala V S,Singh S N.Reactive power management in offshore wind farms by adaptive PSO[J].Engineering Intelligent Systems,2007,15(2):91-98.
[9]  何燕平,何辉,张筱磊.遗传算法中群体多样性评价指标的研究[J].哈尔滨工业大学学报,2009,41(3):67-70.
[10]  He Yanping,He Hui,Zhang Xiaolei.Evaluation index of population diversity in genetic algorithm[J].Journal of Harbin Institute of Technology,2009,41(3):67-70(in Chinese).
[11]  Michalewicz Z.Genetic Algorithms + Data structure = Evolution Program[J].Springer,1996(387):117-183.
[12]  袁松贵,吴敏,彭赋.改进PSO算法用于电力系统无功优化的研究[J].高电压技术,2007,33(7):159-162.
[13]  Yuan Songgui,Wu Min,Peng Fu,et al.Reactive power optimization of power system using the improved particle swarm optimization algorithm [J].High Voltage Engineering,2007,33(7):159-162(in Chinese).
[14]  梁才浩,钟志勇,黄杰波,等.一种改进的进化规划方法及其在电力系统无功优化中的应用[J].电网技术,2006,30(4):16-20.
[15]  Liang Caihao,Chung Chiyung,Wong Kitpou,et al.An improved evolutionary programming method and its application in power system reactive power optimization[J].Power System Technology,2006,30(4):16-20(in Chinese).
[16]  Lee Kwang Y,Bai Xiaomin,Park Y M.Optimization method for reactive power planning by using a modified simple genetic algorithm [J].IEEE Trans on Power Systems,1995,10(4):1843-1850
[17]  Liang C H,Chung C Y,Wong K P ,et al.Parallel optimal reactive power flow based on cooperative co-evolutionary differential evolution and power system decomposition[J].IEEE Trans on Power Systems,2007,22(1):249-257.
[18]  赵树本,张伏生,钟继友,等.自适应差分进化算法在电力系统无功优化中的应用[J].电网技术,2010,34(6):169-174.
[19]  Zhao Shuben,Zhang Fusheng,Zhong Jiyou,et al.An adaptive differential evolution algorithm and its application in reactive power optimization of power system[J].Power System Technology,2010,34(6):169-174(in Chinese).
[20]  刘述奎,陈维荣,李奇,等.基于自适应聚焦粒子群优化算法的电力系统多目标无功优化[J].电网技术,2009,33(13):48-53.
[21]  Liu Shukui,Chen Weirong,Li Qi,et al.Power system multi-objective reactive power optimization based on adaptive focusing particle swarm optimization algorithm[J].Power System Technology,2009,33(13):48-53(in Chinese).
[22]  HosseiniA A,Hamid S.Ant colony optimization- based approach to optimal reactive power dispatch:A comparison of various ant systems[C]//IEEE PES Power Africa 2007 Conference.Africa:IEEE,2007:216-220.
[23]  Bremerman H J.Chemotaxis and optimization[J].Journal of the Franklin Institute,1974,297(5):397-404.
[24]  Müller S D,Marchetto J,Airaghi S,et al.Optimization based on bacterial chemotaxis[J].IEEE Trans on Evolutionary Computation,2002,6(1):16-29.
[25]  李威武,王慧,邹志君,等.基于细菌群体趋药性的函数优化方法[J].电路与系统学报,2005,10(1):58-63.
[26]  Li Weiwu,Wang Hui,Zou Zhijun,et al.Function optimization method based on colony chemotaxis[J].Journal of Circuits and Systems,2005,10(1):58-63(in Chinese).
[27]  黄伟,张建华,张聪,等.基于细菌群体趋药性算法的电力系统无功优化[J].电力系统自动化,2007,31(7):29-33.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133