全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2006 

小干扰稳定性分析中按阻尼比递增关键特征子集计算

, PP. 7-12

Keywords: 电力系统,小干扰稳定性,关键特征值子集,阻尼比,Jacobi-Davidson方法,Arnoldi分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了大规模电力系统小干扰稳定性分析中计算机电振荡模态的一种有效方法。用Jacobi-Davidson方法求取系统状态矩阵按阻尼比递增的特征值子集,抓住了电力系统机电振荡分析问题的本质,避免了大量冗余特征值的计算,大大减少了计算量。另外提出了在Jacobi-Davidson方法中用Arnoldi分解构造初始正交子空间的方法,提高了该方法在迭代初期的计算效率。最后将提出的方法分别在46机和113机系统上进行了试验,结果表明利用所提方法能够有效地求出系统负阻尼和阻尼不足的所有振荡模态,适用于大规模电力系统的机电振荡分析。

References

[1]  Golub G H,Van Loan C F.Matrix computations(2nd edition)[M].Baltimore:John Hopkins University Press,1989.
[2]  王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003.
[3]  Uchida N,Nagao T.A new eigen-analysis method of steady-state stability studies for large power systems:S matrix method[J].IEEE Trans on Power Systems,1988,3(2):706-714.
[4]  Kunder P,Rogers G J,Wong D Y,et al.A comprehensive computer program package for small signal stability analysis of power systems [J].IEEE Trans on Power Systems,1990,5(4):1076-1083.
[5]  Angelidis G,Semlyen A.Improved methodologies for the calculation of critical eigenvalues in small signal stability analysis[J].IEEE Trans on Power Systems,1996,11(3):1209-1217.
[6]  Campagnolo J M,Martins N,Falcao D M.Refactored bi-iteration:a high performance eigensolution method for large power system matrices[J].IEEE Trans on Power Systems,1996,11(3):1228-1235.
[7]  刘晓鹏,吕世荣,郭强,等.小干扰稳定性部分特征值分析的多重变换法[J].电力系统自动化,1998,22(9):36-42.
[8]  Liu Xiaopeng,Lü Shirong,Guo Qiang,et al.A multiple Cayley transformation method for analyzing partial eigenvalues of power system small-signal stability[J].Automation of Electric Power Systems,1998,22(9):36-42.
[9]  谷寒雨,陈陈.一种新的大型电力系统低频机电模式计算方法[J].中国电机工程学报,2000,20(9):50-54.
[10]  Gu Hanyu,Chen Chen.A new algorithm for the computation of low frequency electromechanic oscillation modes of large power systems [J].Proceedings of the CSEE,2000,20(9):50-54.
[11]  Lee B,Song H,Kwon S H,et al.Calculation of rightmost eigenvalues in power systems using the block (BACM) Arnoldi Chebyshev method[J].IEE Proceedings-Generation,Transmission and Distribution, 2003,150(1):23-27.
[12]  杜正春,刘伟,方万良,等.大规模电力系统关键特征值计算的Arnoldi-Chebyshev方法[J].西安交通大学学报,2004,38(10):25-31.
[13]  Du Zhengchun,Liu Wei,Fang Wanliang,et al.Calculation of critical eigenvalues in large-scale power systems using Arnoldi-Chebyshev method[J].Journal of Xi’an Jiaotong University,2004,38(10): 25-31.
[14]  杜正春,刘伟,方万良,等.基于Jacobi-Davidson方法的小干扰稳定性分析[J].中国电机工程学报,2005,25(14):19-24.
[15]  Du Zhengchun,Liu Wei,Fang Wanliang,et al. The application of the Jacobi-Davidson method to the calculation of critical eigenvalues in the small signal stability analysis[J].Proceedings of the CSEE,2005,25(14):19-24.
[16]  Wang L,Semlyen A.Application of sparse eigenvalue techniques to the small signal stability analysis of large power systems[J].IEEE Trans on Power Systems,1990,5(2):635-642.
[17]  Sleijpen G L G,Van der Vorst H A.A Jacobi-Davidson iteration method for linear eigenvalue problems[J].SIAM Journal on Matrix Analysis and Application,1996,17(2):401-425.
[18]  Fokkema D R,Sleijpen G L G,Van der Vorst H A.Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils [J].SIAM Journal on Scientific Computing,1998,20(1):94-125.
[19]  Golub G H,Van der Vorst H A.Eigenvalue computation in the 20th century[J].Journal of Computational and Applied Mathematics,2000,123:35-65.
[20]  Rogers G.Power system oscillations[M].Boston:Kluwer Academic Publishers,2000.
[21]  杜正春,刘伟,方万良,等.小干扰稳定性分析中一种关键特征值计算的稀疏实现[J].中国电机工程学报,2005,25(2):17-21.
[22]  Du Zhengchun,Liu Wei,Fang Wanliang,et al.A sparse method for the calculation of critical eigenvalue in small signal stability analysis [J].Proceedings of the CSEE,2005,25(2):17-21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133