全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2011 

基于辛龙格-库塔-奈斯通方法的电力系统暂态稳定性并行计算方法

, PP. 40-45

Keywords: 电力系统暂态稳定性,辛几何算法,并行算法,矩阵分裂,松弛牛顿法

Full-Text   Cite this paper   Add to My Lib

Abstract:

并行计算是实现大规模电力系统实时分析计算及控制的有效途径。将s级2s阶的辛Runnge-Kutta-Nystrom方法用于经典模型情况下的电力系统暂态稳定性计算,利用矩阵分裂技巧以及矩阵求逆运算的松弛方法,导出了一种新的暂态稳定性并行计算方法。该方法具有内在的时间并行特性和超线性收敛性。基于IEEE145节点系统的仿真测试结果表明,该算法在保持相同或更高的计算精度的前提下,具有与传统的时间并行严格牛顿计算方法相当的收敛性。有关算法具体的并行装配及相关验证结果另文发表。

References

[1]  Wen Liping.A class of diagonally implicit symplectic Runge-Kutta- Nystr?m methods[J].Natural Science Journal of Xiangtan University,1998,20(2):1-4(in Chinese).
[2]  陈全发,肖爱国.Runge-Kutta-Nystr?m方法的若干新性质[J].计算数学,2008,30(2):201-212.
[3]  Chen Quanfa,Xiao Aiguo.Some new properties of Runge-Kutta- Nystr?m methods[J].Mathematica Numerica Sinica,2008,30(2):201-212(in Chinese).
[4]  李寿佛.刚性微分方程算法理论[M].长沙:湖南科学技术出版社,1997:161-162.
[5]  汪芳宗,何一帆.电力系统暂态稳定性数值计算的几种新方法及其比较[J].电力系统保护与控制,2009,37(23):15-19.
[6]  Wang Fangzong,He Yifan.Several new numerical methods and their comparative studies for power system transient stability analysis[J].Power System Protection and Control,2009,37(23):15-19(in Chinese).
[7]  汪芳宗.基于高度并行松驰牛顿方法的暂态稳定性实时分析计算的并行算法[J].中国电机工程学报,1999,19(11):14-18.
[8]  Wang Fangzong.Parallel algorithm of highly parallel relaxed Newton method for real time simulation of transient stability[J].Proceedings of the CSEE,1999,19(11):14-18(in Chinese).
[9]  贾志东.Hamilton系统的数值迭代方法理论[D].北京:中国工程物理研究院,2002.
[10]  常辉,刘文颖,行舟,等.电力系统暂态稳定计算的在线应用[J].电网技术,2007,31(13):54-58.
[11]  Chang Hui,Liu Wenying,Xing Zhou,et al.Online application of power system transient stability computation[J].Power System Technology,2007,31(13):54-58(in Chinese).
[12]  孙闻,房大中,薛振宇.电力系统在线暂态稳定分析方法[J].电网技术,2009,33(14):16-20.
[13]  Sun Wen,Fang Dazhong,Xue Zhenyu.A method for on-line analysis of power system transient stability[J].Power System Technology,2009,33(14):16-20(in Chinese).
[14]  李亚楼,周孝信,吴中习.基于PC机群的电力系统机电暂态仿真并行算法[J].电网技术,2003,27(11):6-12.
[15]  Li Yalou,Zhou Xiaoxin,Wu Zhongxi.Personal computer cluster based parallel algorithms for power system electromechanical transient stability simulation[J].Power System Technology,2003,27(11):6-12(in Chinese).
[16]  洪潮,沈俊明.电力系统暂态稳定计算的一种空间并行算法[J].电网技术,2000,24(5):20-24.
[17]  Hong Chao,Shen Junming.A parallel-in-space algorithm for power system transient stability simulation[J].Power System Technology,2000,24(5):20-24(in Chinese).
[18]  王成山,张家安.基于支路分割和区域迭代的暂态稳定性仿真并行算法[J].电网技术,2004,28(1):22-26.
[19]  Wang Chengshan,Zhang Jia’an.Parallel algorithm for transient stability simulation based on branch cutting and subsystem iterating [J].Power System Technology,2004,28(1):22-26(in Chinese).
[20]  吉兴全,王成山.电力系统并行计算方法比较研究[J].电网技术,2003,27(4):22-26.
[21]  Ji Xingquan,Wang Chengshan.A comparative study on parallel processing applied in power system[J].Power System Technology,2003,27(4):22-26(in Chinese).
[22]  Feng K.Difference schemes for Hamiltonian formalism and symplectic geometry[J].Journal of Computational Mathematics,1986,4(3):279-289.
[23]  Feng K,Qin M Z.Hamiltonian algorithms for Hamiltonian dynamical systems[J].Progress in Natural Science,1991,1(2):105-116.
[24]  冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003:185-239.
[25]  Sun Geng.Construction of high order symplectic Runge-Kutta methods[J].Journal of Computational Mathematics,1993,11(3):250-260.
[26]  肖爱国,李寿佛.辛Runge-Kutta方法的特征与构造[J].高等学校计算数学学报,1995,17(3):213-222.
[27]  Xiao Aiguo,Li Shoufu.Characterization and construction of symplectic Runge-Kutta methods[J].Numerical Mathematics Journal of Chinese Universities,1995,17(3):213-222(in Chinese).
[28]  Sun Geng.A simple way constructing symplectic Runge-Kutta methods[J].Journal of Computational Mathematics,2000,18(1):61-68.
[29]  肖爱国.辛Runge-Kutta-Nystr?m方法[J].湘潭大学自然科学学报,1997,19(1):5-7.
[30]  Xiao Aiguo.Symplectic Runge-Kutta-Nystr?m methods[J].Natural Science Journal of Xiangtan University,1997,19(1):5-7(in Chinese).
[31]  文立平.一类对角隐式辛Runge-Kutta-Nystr?m方法[J].湘潭大学
[32]  自然科学学报,1998,20(2):1-4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133