全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2014 

基于天气分型的风电功率预测方法

DOI: 10.13335/j.1000-3673.pst.2014.01.015, PP. 93-98

Keywords: 风电场,天气分型,功率,预测,数值天气预报

Full-Text   Cite this paper   Add to My Lib

Abstract:

对风电场输出功率进行预测是保证大规模风电集中并网后电力系统安全稳定运行的有效手段。提出了一种基于天气分型的风电功率预测算法,以数值天气预报(numericalweatherprediction,NWP)中的风速向量和压力日变化为基础,采用主成分分析对样本进行降维处理,以聚类分析的方法对天气类型进行分类,针对不同的天气类型分别建立预测模型,并与单一预测模型进行对比。研究结果表明,主成分分析结合聚类分析的方法可实现对天气现象的有效分类;对于较为稳定的天气现象,聚类模型较单一模型的预测精度提高显著,而对于不稳定的天气现象,聚类模型预测精度提高有限;对总体样本而言,基于天气分型的预测方法较常规方法精度提高2%以上。

References

[1]  迟永宁, 刘燕华, 王伟胜, 等.风电接入对电力系统的影响[J].电网技术, 2007, 31(3):77-81.Chi Yongning, Liu Yanhua, Wang Weisheng, et al.Study on impact of wind power integration on power system[J].Power System Technology, 2007, 31(3):77-81(in Chinese).
[2]  Giebel G, Landberg G, Kariniotakis G.State-of-the-art on methods and software tools for short-term, prediction of wind energy production[C]//European Wind Energy Conference & Exhibition.Madrid, Spain:IEEE, 2003:40-47.
[3]  GB/T 19963—2011 风电场接入电力系统接入规定[S].
[4]  国家能源局.风电场功率预测预报管理暂行办法[R].北京:国家能源局, 2011.
[5]  Lange M, Focken U.Physical approach to short-term wind power prediction[M].Berlin:Springer, 2006:10-20.
[6]  Landberg L.Short-term prediction of local wind conditions[J].Journal of Wind Engineering and Industrial Aerodynamics, 2001, 22(89):235-245.
[7]  Focken U, Lange M, Waldl H P.Previento-a wind power prediction system with an innovative upscaling algorithm[C]//European Wind Energy Conference.Copenhagen, Denmark:IEEE, 2001:276.
[8]  Bernhard L, Kurt R, Bernhard E, et al.Wind power prediction in Germany—recent advances and future challenges[C]//European Wind Energy Conference.Athens:IEEE, 2006.
[9]  Marti I, Cabezon D, Villanueva J.Local pred and regio pred.Advanced tools for wind energy prediction in complex terrain[C]//European Wind Energy Conference.Madrid:IEEE, 2003:16-19.
[10]  Lange M, Focken U, Heinemann D.Regional wind power prediction with risk control[C]//Proceedings of the World Wind Energy Conference.Berlin:IEEE, 2002.
[11]  Kariniotakis G, Mayer D, Moussafir J.ANEMOS:development of a next generation wind power forecasting system for the large-scale integration of onshore & offshore wind farms[C]//European Wind Energy Conference & Exhibition.Madrid, Spain:IEEE, 2003.
[12]  Marti I, Nielsen T S, Madsen H, et al.Prediction models in complex terrain[C]//Proceedings of the European Wind Energy Conference.Copenhagen:IEEE, 2001:875-878.
[13]  Giebel G, Badger J, Louka P, et al.Short-term forecasting using advanced physical modelling:the results of the Anemos project. Results from mesoscale, microscale and CFD modelling[C]// European Wind Energy Conference and Exhibition.Greece, Athens: IEEE, 2006.
[14]  Perivolaris Y G, Vougiouka A N, Alafouzos V V, et al.Coupling of a mesoscale atmospheric prediction system with a CFD microclimatic model for production forecasting of wind farms in complex terrain: Test case in the island of Evia[C]//Proceedings of the European Wind Energy Conference.Athens:IEEE, 2006.
[15]  Lange M, Focken U, Meyer R, et al.Optimal combination of different numerical weather models for improved wind power predictions[C]//Sixth International Workshop on Large-Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms.Delft:IEEE, 2006.
[16]  Buizza R, Bidlot J R, Wedi N, et al.The new ECMWF VAREPS (variable resolution ensemble prediction system)[J].Quarterly Journal of the Royal Meteorological Society, 2007, 133(624):681-695.
[17]  孙春顺, 王耀南, 李欣然.小时风速的向量自回归模型及应用[J].中国电机工程学报, 2008, 28(14):112-117.Sun Chunshun, Wang Yaonan, Li Xinran.A vector autoregression model of hourly wind speed and its application in hourly wind speed forecasting[J].Proceedings of the CSEE, 2008, 28(14):112-117(in Chinese).
[18]  杜颖, 卢继平, 李青, 等.基于最小二乘支持向量机的风电场短期风速预测[J].电网技术, 2008, 32(15):62-66.Du Ying, Lu Jiling, Li Qing, et al.Short term wind speed forecasting of wind farm based on least square-support vector machine[J].Power System Technology, 2008, 32(15):62-66(in Chinese).
[19]  潘迪夫, 刘辉, 李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术, 2008, 32(7):82-86.Pan Difu, Liu Hui, Li Yanfei.A wind speed forcasting optimization model for wind farms based on time series analysis and Kalman filter algorithm[J].Power System Technology, 2008, 32(7):82-86(in Chinese).
[20]  杨秀媛, 肖洋, 陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报, 2005, 25(11):1-5.Yang Xiuyuan, Xiao Yang, Chen Shuyong.Wind speed and generated power forecasting in wind farm[J].Proceedings of the CSEE, 2005, 25(11):1-5(in Chinese).
[21]  范高锋, 王伟胜, 刘纯, 等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):118-123.Fan Gaofeng, Wang Weisheng, Liu Chun, et al.Wind power prediction based on artificial neural network[J].Proceedings of the CSEE, 2008, 28(34):118-123(in Chinese).
[22]  冯双磊, 王伟胜, 刘纯, 等.风电功率物理预测方法研究[J].中国电机工程学报, 2010, 30(2):1-6.Feng Shuanglei, Wang Weisheng, Liu Chun, et al.Study on the physical approach to wind power prediction[J].Proceedings of the CSEE, 2010, 30(2):1-6(in Chinese).
[23]  Palmer T N.Predicting uncertainty in forecasts of weather and climate[J].Reports on Progress in Physics, 2000, 63(2):71-116.
[24]  任雪松, 于秀林.多元统计分析[M].北京:中国统计出版社, 2011:184-200.
[25]  Kalkstein L S, Tan G, Skindlov J A.An evaluation of three clustering procedures for use in synoptic climatological classification[J].Journal of Climate and Applied Meteorology, 1987, 26(6):717-730.
[26]  刘纯, 范高锋, 王伟胜, 等.风电场输出功率的组合预测模型[J].电网技术, 2009, 33(13):74-79.Liu Chun, Fan Gaofeng, Wang Weisheng, et al.A Combination forecasting model for wind farm output power[J].Power System Technology, 2009, 33(13):74-79(in Chinese).
[27]  Q/GDW 588—2011 风电功率预测功能规范[S].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133