全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2014 

半定规划最优潮流的并行计算方法

DOI: 10.13335/j.1000-3673.pst.2014.01.027, PP. 175-180

Keywords: 最优潮流,半定规划,内点算法,并行计算

Full-Text   Cite this paper   Add to My Lib

Abstract:

最优潮流的半定规划松弛方法可提高最优解的质量,但存在计算时间长的问题。为此,提出了半定规划最优潮流的并行计算方法。该方法对半定规划原始-对偶内点法中的Schur方程采用并行方式进行计算,一方面,将系数矩阵各行的计算量分配到不同的处理器上完成,以加速方程的形成;另一方面,对系数矩阵进行并行Cholesky分解,从而加速方程的求解。IEEE-118节点和IEEE-300节点2个系统的计算结果表明所提并行算法的加速效果明显,并保持了内点法的良好收敛性,为半定规划最优潮流的工程应用提供了可借鉴的经验。

References

[1]  Alsac O, Scott B.Optimal load flow with steady-state security[J].IEEE Trans on PAS, 1974, 93(3):745-751.
[2]  毕兆东, 王建全, 韩祯祥.逐步二次规划法在约束潮流中的运用[J].电网技术, 2003, 27(2):30-33.Bi Zhaodong, Wang Jianquan, Han Zhenxiang.Constrained load flow calculation by sequential quadratic programming method[J].Power System Technology, 2003, 27(2):30-33(in Chinese).
[3]  刘明波, 王晓村.内点法在求解电力系统优化问题中的应用综述[J].电网技术, 1999, 23(8):61-64.Liu Mingbo, Wang Xiaocun.An application of interior point method to solution of optimization problems in power systems[J].Power System Technology, 1999, 23(8):61-64(in Chinese).
[4]  Blackford L S, Choi J, Cleary A, et al.ScaLA-PACK Users’Guide [M].Philadelphia:Society for Industrial and Applied Mathematics, 1997.
[5]  Lov´asz L, Schrijver A.Cones of matrices and set-functions and 0-1 optimization[J].SIAM Journal on Optimization, 1991, 1(2):166-190.
[6]  Yamashita M, Fujisawa K, Kojima M.SDPARA:semidefinite programming algorithm parallel version[J].Parallel Computing, 2003, 29(8):1053-1067.
[7]  Message Passing Interface[EB/OL].Seattle:ANL Mathematics and Computer Science.Http://www.mcs.anl.gov/research/projects/mpi/.
[8]  卫志农, 向育鹏, 孙国强, 等.计及碳排放含有碳捕集电厂电网的多目标动态最优潮流[J].电网技术, 2012, 36(12):11-17.Wei Zhinong, Xiang Yupeng, Sun Guoqiang, et al.Carbon emission-considered multi-objective dynamic optimal power flow of power system containing carbon-capture plant[J].Power System Technology, 2012, 36(12):11-17(in Chinese).
[9]  郝玉国, 张靖, 于尔铿, 等.最优潮流实用化研究[J].中国电机工程学报, 1996, 16(6):388-391.Hao Yuguo, Zhang Jing, Yu Erkeng, et al.Achievements of practical optimal power flow[J].Proceedings of the CSEE, 1996, 16(6):388-391(in Chinese).
[10]  乐秀璠, 覃振成, 杨博, 等.基于改进多中心-校正内点法的最优潮流[J].电网技术, 2005, 29(12):47-52.Le Xiufan, Qin Zhencheng, Yang Bo, et al.Optimal power flow based on improved multiple centrality-correction interior point method[J].Power System Technology, 2005, 29(12):47-52(in Chinese).
[11]  Todd M J.Semidefinite optimization[J].Acta Numerica, 2001(10):515-560.
[12]  白晓清, 韦化, Katsuki Fujisawa.求解最优潮流问题的内点半定规划法[J].中国电机工程学报, 2008, 28(19):56-64.Bai Xiaoqing, Wei Hua, Katsuki Fujisawa.Solution of optimal power flow problems by semi-definite programming [J].Proceedings of the CSEE, 2008, 28(19):56-64(in Chinese).
[13]  Lavaei J, Low S H.Zero duality gap in optimal power flow problem[J].IEEE Trans Power Syst, 2012, 27(1):92-107.
[14]  Lavaei J.Zero duality gap for classical OPF problem convexifies fundamental nonlinear power problems[C]//American Control Conf., San Francisco, USA, 2011:4566-4573.
[15]  Bose S, Gayme D F, Low S, et al.Optimal power flow over tree networks[C]//Forty-Ninth Annual Allerton Conference on Communication, Control, and Computing.Urbana, USA, 2011:1342-1348.
[16]  Lesieutre B C, Molzahn D K, Borden A R, et al.Examining the limits of the application of semidefinite programming to power flow problems[C]//Forty-Ninth Annual Allerton Conference on Communication, Control, and Computing.Urbana, USA, 2011:1492-1499.
[17]  王雅婷, 何光宇, 刘铠诚, 等.求解状态估计问题的内点半定规划法[J].电网技术, 2012, 36(10):209-215.Wang Yating, He Guangyu, Liu Kaicheng, et al.An semi-definite programming method for state estimation problem[J].Power System Technology, 2012, 36(10):209-215(in Chinese).
[18]  吉兴全, 王成山.电力系统并行计算方法比较研究[J].电网技术, 2003, 27(4):22-26.Ji Xingquan, Wang Chengshan.A comparative study on parallel processing applied in power system[J].Power System Technology, 2003, 27(4):22-26(in Chinese).
[19]  Fujisawa K, Endo T, Sato H, et al.High-performance general solver for extremely large-scale semidefinite programming problems[C]//2012 International Conference for High Performance Computing, Networking, Storage and Analysis.Salt Lake, USA, 2012:1-11.
[20]  Yamashita M, Fujisawa K, Fukuda M, et al.Parallel primal-dual interior-point methods for semidefinite programs[R].Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, 2005.
[21]  Peng J, Roos C, Terlaky T.New complexity analysis of the primal-dual method for semidefinite optimization based on the nesterov-todd direction[J].Journal of Optimization Theory and Applications, 2001, 109(2):327-343.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133