全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2014 

基于多特征融合的交流系统串联电弧故障诊断

DOI: 10.13335/j.1000-3673.pst.2014.03.038, PP. 795-801

Keywords: 电弧故障,小波变换,多特征融合,故障诊断,神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

为实现对用电系统低压端串联电弧故障的准确诊断,根据交流系统中低压串联电弧故障的奇异性、能量特性及不确定性,通过自主搭建的电弧故障模拟实验平台及不同负载下的串联电弧故障模拟实验,提出一种基于多特征融合的串联电弧故障诊断方法。该方法根据信号不同特性,结合小波变换理论对经降噪预处理后的采样信号进行主成分分析,提取各频段特性对信号的贡献率,并以信号3种特性中最大贡献率所在频段的空间位置关系作为特征向量构成1×3阶信号特性分布矩阵;将此矩阵作为网络的输入向量,利用改进多层前馈神经网络构建特征向量与电弧故障之间的映射关系。测试结果表明,该方法可减小电弧燃烧对诊断结果的影响,实现对串联电弧故障的诊断分类。

References

[1]  公安部消防局.2010年中国火灾统计年鉴.北京:中国人事出版社, 2010.
[2]  Restrepo C E.Arc fault detection and discrimination methods[C]//The 53 rd IEEE Holm Conference, Pittsburg, 2007:115-122.
[3]  Malakondaiah N, Thomas J S, Suresh G.Arc fault detection scheme for 42-V automotive DC networks using current shunt[J].IEEE Trans on Power Electronics, 2006, 21(3):633-639.
[4]  蓝会立, 张认成.基于小波分析的故障电弧伴生弧声特征提取[J].电力系统及其自动化学报, 2008, 20(4):57-62.Lan Huili, Zhang Rencheng.Study on the feature extraction of fault arc sound signal based on wavelet analysis[J].Proceedings of the CSU-EPSA, 2008, 20(4):57-62(in Chinese).
[5]  Ames A M, Robbert B.Design and analysis of aerospace DC arcing faults using fast Fourier transformation and artificial neural network[C]//Power Engineering Society General Meeting, Toronto:Toronto Hydro Corpotation, 2003: 791-792.
[6]  Li Dongwei, Song Zhengxiang, Wang Jianhua.A method for residential series arc fault detection and identification[C]//Proceedings of the 55th IEEE Holm Conference on Electrical Contacts, Vancouver:2009-55th IEEE Holm Conference Committees, 2009, 8-14..
[7]  林圣, 何正友, 陈鉴, 等.基于行波时频特征的单端故障测距方法[J].电网技术, 2012, 36(1):258-264.Lin Sheng, He Zhengyou, Chen Jian, et al.A single terminal fault location method based on time-frequency characteristic of traveling wave[J].Power System Technology, 2012, 36(1):258-264(in Chinese).
[8]  Bahoura M, Rouat J.Wavelet speech enhancement based on the Teager energy operator[J].IEEE Signal Processing Letters, 2001, 8(1):10-12.
[9]  董超, 廖清芳, 唐飞, 等.基于Teager能量算子的低频振荡节点同调分群[J].电网技术, 2012, 36(5):263-268.Dong Chao, Liao Qingfang, Tang Fei, et al.Teager energy operator based coherent node grouping for power system low-frequency oscillation[J].Power System Technology, 2012, 36(5):263-268(in Chinese).
[10]  范新桥, 朱永利.基于双端行波原理的多端输电线路故障定位新方法[J].电网技术, 2013, 37(1):261-269.Fan Xinqiao, Zhu Yongli.A novel fault location scheme for multi-terminal transmission lines based on principle of double-ended traveling wave[J].Power System Technology, 2013, 37(1):261-269(in Chinese).
[11]  曹彪, 吕小青, 曾敏, 等.短路过渡电弧焊电流信号的近似熵分析[J].物理学报, 2006, 55(4):1696-1705.Cao Biao, Lü Xiaoqing, Zeng Min, et al.Approximate entropy analysis of current in short-circuiting arc welding[J].Acta Physica Sinica, 2006, 55(4):1696-1705(in Chinese).
[12]  董青迅, 李兴源, 穆子龙, 等.基于近似熵的次同步谐振检测方法[J].电网技术, 2011, 35(11):103-106.Dong Qingxun, Li Xingyuan, Mu Zilong, et al.A new approximate entropy-based method to detect sub-synchronous resonance[J]. Power System Technology, 2011, 35(11):103-106(in Chinese).
[13]  杨小明, 刘涤尘, 廖清芳, 等.动态近似熵在强迫功率振荡在线检测中的应用[J].电网技术, 2012, 36(11):129-133.Yang Xiaoming, Liu Dichen, Liao Qingfang, et al.Application of dynamic approximate entropy in real-time detection of forced power oscillation[J].Power System Technology, 2012, 36(11):129-133(in Chinese).
[14]  何怡刚, 祝文姬, 周炎涛, 等.基于粒子群算法的模拟电路故障诊断方法[J].电工技术学报, 2010, 25(6):163-171.He Yigang, Zhu Wenji, Zhou Yantao, et al.An analog circuit diagnosis method based on particle swarm optimization algorithm[J].Transactions of China Electrotechnical Society, 2010, 25(6):163-171(in Chinese).
[15]  周天春, 杨丽君, 廖瑞金, 等.基于局部放电因子向量和BP神经网络的油纸绝缘老化状况诊断[J].电工技术学报, 2010, 25(10):18-23.Zhou Tianchun, Yang Lijun, Liao Ruijin, et al.Diagnosis of aging condition in oil-paper insulation based on factor vectors of partial discharge and BP neural network[J].Transactions of China Electrotechnical Society, 2010, 25(10):18-23(in Chinese).
[16]  Kolker D, Campolo S, Disalvo N.A study of time/current characteristics of the ignition processes in cellulosic material caused by electrical arcing for application in 240 V arc-fault circuit interrupters[C]//Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts, Pittsburg:2007-53rd IEEE Holm Conference Committees, 2007:105-114.
[17]  李东敏, 刘志刚, 蔡军, 等.基于多小波包系数熵和人工神经网络的输电线路故障类型识别方法[J].电网技术, 2008, 32(24):65-69.Li Dongmin, Liu Zhigang, Cai Jun, et al.Transmission lines fault recognition method based on multi-wavelet packet coefficient entropy and artificial neural network[J].Power System Technology, 2008, 32(24):65-69(in Chinese).
[18]  雍静, 桂小智, 牛亮亮, 等.基于自回归参数模型的低压系统串联电弧故障识别[J].电工技术学报, 2011, 26(8):213-219.Yong Jing, Gui Xiaozhi, Niu Liangliang, et al.Series arc fault identification in low voltage system based on autoregressive parameter model[J].Transactions of China Electrotechnical Society, 2011, 26(8):213-219(in Chinese).
[19]  孙鹏, 董荣刚, 郑志成.基于小波分析信号特征频段能量变比的故障电弧诊断技术研究[J].高压电器, 2010, 46(7):46-50.Sun Peng, Dong Ronggang, Zheng Zhicheng.Arc fault diagnosis technology based on the analysis of energy variation of signal’s characteristic frequency band with wavelet transform [J].High Voltage Apparatus, 2010, 46(7):46-50(in Chinese).
[20]  孙鹏, 郑志成, 闫容妮, 等.采用小波熵的串联型故障电弧检测方法[J].中国电机工程学报, 2010, 30(S1):232-236.Sun Peng, Zheng Zhicheng, Yan Rongni, et al.Detection method of arc fault in series with wavelet entropy[J].Proceedings of the CSEE, 2010, 30(S1):232-236(in Chinese).
[21]  ANSI UL1699.UL standard for safety for arc fault circuit interrupters[S].Second Edition, 2008.
[22]  George D G, Kon Wong, Robert F D.More about arc-fault circuit interrupters[J].IEEE Trans on Industry Applications, 2004, 40(4):1008-1009.
[23]  尹同庆, 陈洪亮.基于小波变换的故障电弧检测技术研究[J].实验室研究与探索, 2008, 27(3):19-21.Yin Tongqing, Chen Hongliang.An arc-fault detection based on wavelet transformation[J].Research and Exploration in Laboratory, 2008, 27(3):19-21(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133