全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2015 

灰色关联模型在高压断路器故障诊断中的应用

DOI: 10.13335/j.1000-3673.pst.2015.06.042, PP. 1731-1735

Keywords: 高压断路器,机械故障,灰色关联分析法,故障诊断,分辨系数

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对高压断路器故障具有较强的随机性和模糊性的特点,基于灰色关联分析法(greyrelationanalysismethod,GRAM)建立一种高压断路器机械故障诊断模型。以高压断路器分合闸过程中线圈电流和时间节点值作为特征量,构造所需参考向量和比较向量,计算向量间的关联度值,依次对断路器各故障状态予以识别。实例计算结果表明建立的故障诊断模型能有效地诊断出高压断路器机械故障;不同的分辨系数取值影响诊断结果的分辨率和可靠性。在高压断路器机械故障诊断中,宜取较小的分辨系数值,以保证结果具有较高准确度。

References

[1]  关永刚,黄瑜珑,钱家骊.基于振动信号的高压断路器机械故障诊断[J].高电压技术,2000,26(3):66-68. Guan Yonggang,Huang Yulong,Qian Jiali.An overview on mechanical failure diagnosis technique for high voltage circuit breaker based on vibration signal[J].High Voltage Engineering,2000,26(3):66-68(in Chinese).
[2]  Runde M,Aurud T,Lundgaard L E,et al.Acoustic diagnostic of high voltage circuit-breakers[J].IEEE Trans on Power Delivery,1992,7(3):1306.
[3]  王振浩,杜凌艳,李国庆,等.动态时间规整算法诊断高压断路器故障[J].高电压技术,2006,32(10):36-38. Wang Zhenhao,Du Lingyan,Li Guoqing,et al.Fault diagnosis of high voltage circuit breakers based on dynamic time warping algorithm[J].High Voltage Engineering,2006,32(10):36-38(in Chinese).
[4]  孙来军,胡晓光,纪延超,等.基于支持向量机的高压断路器机械状态分类[J].电工技术学报,2006,21(8):53-58. Sun Laijun,Hu Xiaoguang,Ji Yanchao,et al.Mechanical fault classification of high voltage circuit breaker based on support vector machine[J].Transactions of China Electrotechnical Society,2006,21(8):53-58(in Chinese).
[5]  贾嵘,洪刚,薛建辉,等.粒子群优化-最小二乘支持向量机算法在高压断路器机械故障诊断中的应用[J].电网技术,2010,34(3):197-200. Jia Rong,Hong Gong,Xue Jianhui,et al.Application of particle swarm optimization-least square support vector machine algorithm in mechanical fault diagnosis of high-voltage circuit breaker[J].Power System Technology,2010,34(3):197-200(in Chinese).
[6]  程序,关永刚,张文鹏,等.基于因子分析和支持向量机算法的高压断路器机械故障诊断方法[J].电工技术学报,2014,29(7):209-215. Chen Xu,Guan Yonggang ,Zhang Wenpeng,et al.Diagnosis method on the mechanical failure of high voltage circuit breakers based on factor analysis and SVM[J].Transactions of China Electrotechnical Society,2014,29(7):209-215(in Chinese).
[7]  Yang Y,Yu D J,Cheng J S.A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J].Journal of Sound and Vibration,2006(294):269-277.
[8]  Cheng J S,Yu D J,Tang J S,et al.Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis[J].Mechanism and Machine Theory,2008(43):712-723.
[9]  黄建,胡晓光,巩玉楠.基于经验模态分解的高压断路器机械故障诊断方法[J].中国电机工程学报,2011,31(12):108-113. Huang Jian,Hu Xiaoguang,Gong Yu’nan.Machinery fault diagnosis of high voltage circuit breaker based on empirical mode decomposition [J].Proceedings of the CSEE,2011,31(12):108-113(in Chinese).
[10]  赵书涛,张佩,申璐,等.高压断路器振声联合故障诊断方法[J].电工技术学报,2014,29(7):216-221. Zhao Shutao,Zhang Pei,Shen Lu,et al.Vibration and acoustic joint mechanical fault diagnosis method of high voltage circuit breakers[J].Transactions of China Electrotechnical Society,2014,29(7):216-221(in Chinese).
[11]  罗小安,翁陈宇.基于RBF神经网络在高压断路器故障诊断的研究[J].电气应用,2007,26(4):50-53. Luo Xiaoan,Weng Chenyu.Diagnosis research on the failure of high voltage circuit breakers based the RBF neural network[J].Electrotechnical Application,2007,26(4):50-53(in Chinese).
[12]  吕超,于洪海,王立欣.基于人工免疫网络的断路器在线自学习故障诊断[J].中国电机工程学报,2009,29(34):128-134. Lȕ Chao,Yu Honghai,Wang Lixin.On-line self-learning fault diagnosis for circuit breakers based on artificial immune network[J].Proceedings of the CSEE,2009,29(34):128-134(in Chinese).
[13]  邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990:33-78.
[14]  Wu W Y,Chen S P.A prediction method using the grey model GMC(1,n)combined with the grey relational analysis: a case study on Internet access population forecast[J].Applied Mathematics and Computation,2005,169(1):198-217.
[15]  Kang J,Zou Z H.Time prediction model for pipeline leakage based on grey relational analysis[J].Physics Procedia,2012(25):2019-2024.
[16]  Yang F,Qian X M,Huang P.Fire safety assessment of underground buildings based on grey relational analysis[J].Procedia Engineering,2012(45):89-95.
[17]  Xu G,Yang Y P,Lu S Y,et al.Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process[J].Energy Policy,2011,39(5):2343-2351.
[18]  Li X,LiYang G M,Zhang Y.Identifying major factors affecting groundwater change in the North China Plain with grey relational analysis[J].Water,2014,6(6):1581-1600.
[19]  董立立,朱煜,黄道,等.灰关联分析及其在装备故障诊断中的应用[J].华东理工大学学报:自然科学版,2008,34(4):563-567. Dong Lili,Zhu Yu,Huang Dao,et al.Grey relevancy analysis and its application to equipment fault diagnosis[J].Journal of East China University of Science and Technology:Natural Science Edition ,2008,34(4):563-567(in Chinese).
[20]  张小莲,郝思鹏,李军,等.基于灰色关联度的风机MPPT控制影响因素分析[J].电网技术,2015,39(2):445-449. Zhang Xiaolian,Hao Sipeng,Li Jun,et al.Grey correlation based analysis on impacting factors of maximum power point tracking control of wind power generating unit[J].Power System Technology,2015,39(2):445-449(in Chinese).
[21]  李彦斌,于心怡,王致杰.采用灰色关联度与TOPSIS法的光伏发电项目风险评价研究[J].电网技术,2013,37(6):1514-1519. Li Yanbin,Yu Xinyi,Wang Zhijie.Risk assessment on photovoltaic power generation project by grey correlation analysis and TOPSIS method [J].Power System Technology,2013,37(6):1514-1519(in Chinese).
[22]  刘文颖,门德月,梁纪峰,等.基于灰色关联度与LSSVM组合的月度负荷预测[J].电网技术,2012,36(8):228-232. Liu Wenying,Men Deyue,Liang Jifeng,et al.Monthly load forecasting based on grey relational degree and least squares support vector machine [J].Power System Technology,2012,36(8):228-232(in Chinese).
[23]  刘有为,肖燕.智能高压开关设备可靠性自评估方法[J].电网技术,2015,39(3):862-866. Liu Youwei,Xiao Yan.A self-evaluation method of reliability for smart high voltage switchgear [J].Power System Technology,2015,39(3):862-866(in Chinese).
[24]  彭搏.高压断路器在线监测与故障诊断研究[D].上海:上海交通大学,2013.
[25]  范凯,吴皓滢.灰色系统关联度中一种新的分辨系数确定方法[J].武汉理工大学学报,2002,24(7):87-89. Fan Kai,Wu Haoying.A new distinguish coefficient determined method of gray correlation degree [J].Journal of Wuhan University of Technology,2002,24(7):87-89(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133