全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2006 

基于粗糙集的默认规则挖掘算法在电力系统短期负荷预测中的应用

, PP. 18-23

Keywords: 基于粗糙集的默认规则挖掘算法,负荷预测,离散化,电力系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

将基于粗糙集的默认规则挖掘算法(MiningDefaultRulesBasedonRoughSet,MDRBR)用于电力系统短期负荷预测,首先采用基于Gini指标的粗糙集离散化算法对气温、湿度等影响负荷的条件属性进行离散化,同时兼顾了条件属性和决策属性。在此基础上,通过计算规则的信赖度和支持度形成不同层次上符合初定阈值的带粗糙集算子的网络规则集,能减少因噪音的影响而产生的多余规则,提高规则产生和实际分类的效率,使所产生的分类规则集大大缩小,提高在使用规则时检索规则的效率。在负荷预测时自上而下逐层搜索规则网直至找出与所给信息相匹配的规则。粗糙集算子反映了规则的重要程度,同时作为选择规则的标准。实际应用表明,该方法能有效去除噪音,提高默认规则的挖掘效率,从而提高负荷预测的精度,具有一定的实用性。

References

[1]  Zhang Buhan,Liu Xiaohua,Wan Jianping,et al.Load forecasting based on chaotic time series and analysis of its key factors[J].Power System Technology,2004,28(13):32-35,49.
[2]  徐军华,刘天琪.基于小波分解和人工神经网络的短期负荷预测[J].电网技术,2004,28(8):30-33.
[3]  Xu Junhua,Liu Tianqi.An approach to short-term load forecasting based on wavelet transform and artificial neural network[J].Power System Technology,2004,28(8):30-33.
[4]  张步涵,赵剑剑,刘小华,等.一种基于小波神经元网络的短期负荷预测方法[J].电网技术,2004,28(7):15-18.
[5]  Zhang Buhan,Zhao Jianjian,Liu Xiaohua,et al.Short-term load forecasting based on wavelet neural network[J].Power System Technology,2004,28(7):15-18.
[6]  孙雅明,张智晟.相空间重构和混沌神经网络融合的短期负荷预测研究[J].中国电机工程学报,2004,24(1):44-48.
[7]  Sun Yaming,Zhang Zhisheng.A new model of STLF based on the fusion of PSRT and chaotic neural networks[J].Proceedings of the CSEE,2004,24(1):44-48.
[8]  余贻鑫,吴建中.基于事例推理模糊神经网络的中压配电网短期节点负荷预测[J].中国电机工程学报,2005,25(12):18-23.
[9]  Yu Yixin,Wu Jianzhong.CBRFNN-based short-term nodal load forecasting for middle voltage distribution networks[J].Proceedings of the CSEE,2005,25(12):18-23.
[10]  Luo Zhiqiang,Zhang Yan,Zhu Jie.Application of rough set theory in electric power load forecasting[J].Power System Technology,2004,28(3):29-32.
[11]  林杰斌,刘明德,陈湘.数据挖掘与OLAP理论与实务[M].北京:清华大学出版社,2003.
[12]   刘小华,刘沛,张步涵,等.逐级均值聚类算法的RBFN模型在负荷预测中的应用[J].中国电机工程学报,2004,24(2):17-21.
[13]  招海丹,吴捷,杨苹,等.一个综合智能化电力短期负荷预测系统的研究[J].电网技术,2000,24(12):45-48.
[14]  Zhao Haidan,Wu Jie,Yang Ping,et al.A research of an integrated intelligent system for short-term electric load forecasting[J].Power System Technology,2000,24(12):45-48.
[15]  张林,刘先珊,阴和俊.基于时间序列的支持向量机在负荷预测中的应用[J].电网技术,2004,28(19):38-41.
[16]  Zhang Lin,Liu Xianshan,Yin Hejun.Application of support vector machines based on time sequence in power system load forecasting [J].Power System Technology,2004,28(19):38-41.
[17]  张步涵,刘小华,万建平,等.基于混沌时间序列的负荷预测及其关键问题分析[J].电网技术,2004,28(13):32-35,49.
[18]  冯丽,邱家驹.基于模糊多目标遗传优化算法的节假日电力负荷预测[J].中国电机工程学报,2005,25(10):29-34.
[19]  Feng Li,Qiu Jiaju.Short-term load forecasting for anomalous days based on fuzzy multi-objective genetic optimization algorithm [J].Proceedings of the CSEE,2005,25(10):29-34.
[20]  谢宏,牛东晓,张国立,等.一种模糊模型的混合建模方法及在短期负荷预测中的应用[J].中国电机工程学报,2005,25(8):17-22.
[21]  Xie Hong,Niu Dongxiao,Zhang Guoli,et al.A hybrid fuzzy modeling method and its application in short-term load forecast [J].Proceedings of the CSEE,2005,25(8):17-22.
[22]  杨延西,刘丁.基于小波变换和最小二乘支持向量机的短期电力负荷预测[J].电网技术,2005,29(13):60-64.
[23]  Yang Yanxi,Liu Ding.Short-term load forecasting based on wavelet transform and least square support vector machines[J].Power System Technology,2005,29(13):60-64.
[24]  朱六璋,袁林,黄太贵.短期负荷预测的实用数据挖掘模型[J].电力系统自动化,2004,28(3):49-52.
[25]  Zhu Liuzhang,Yuan Lin,Huang Taigui.Applied data mining models for short-term load forecasting[J].Automation of Electric Power Systems,2004,28(3):49-52.
[26]  刘敦楠,何光宇,范旻,等.数据挖掘与非正常日的负荷预测[J].电力系统自动化,2004,28(3):53-57.
[27]  Liu Dunnan,He Guangyu,Fan Min,et al.Data mining and short-term load forecasting for abnormal days[J].Automation of Electric Power Systems,2004,28(3):53-57.
[28]  于达仁,胡清华,鲍文.融合粗糙集和模糊聚类的连续数据知识发现[J].中国电机工程学报,2004,24(6):205-210.
[29]  Yu Daren,Hu Qinghua,Bao Wen.Combining rough set methodology and fuzzy clustering for knowledge discovery from quantitative data[J].Proceedings of the CSEE,2004,24(6):205-210.
[30]  程其云,孙才新,周湶,等.粗糙集信息熵与自适应神经网络模糊系统相结合的电力短期负荷预测模型及方法[J].电网技术,2004,28(17):72-75.
[31]  Cheng Qiyun,Sun Caixin,Zhou Quan,et al.Model and method for power system short-term load forecasting based on integration of information entropy in rough set theory with adaptive neural fuzzy inference system[J].Power System Technology,2004,28(17):72-75.
[32]  罗志强,张焰,朱杰.粗集理论在电力系统负荷预测中的应用[J].电网技术,2004,28(3):29-32.
[33]  Liu Xiaohua,Liu Pei,Zhang Buhan,et al.Application of RBFN model for load forecasting based on ranking means clustering [J].Proceedings of the CSEE,2004,24(2):17-21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133