全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2006 

基于快速傅里叶变换与误差最小原理的谐波分析方法

, PP. 76-79

Keywords: 快速傅里叶变换(FFT),参数修正,均方差,电力系统,谐波

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了基于快速傅里叶变换与误差最小原理的电力系统谐波分析方法。该方法设定了畸变波形模型和修正参数,当模型波形与实际波形之间的均方差最小时,模型参数可以代表实际波形的参数。为避免分析出的谐波次数不准确而出现无效参数,把实际采样数据分成训练组和测试组。在训练组中通过最陡下降梯度查询学习策略的迭代循环修正参数。在测试组中检测谐波次数的正确性,获得有效的谐波分析结果,实现对次谐波和频率相隔很小的谐波的同步跟踪。仿真实验验证了该方法的有效性与易实现性。

References

[1]  肖湘宁,徐永海.电力系统谐波及其综合治理[J].中国电力,1998,31(4):59-61. Xiao Xiangning,Xu Yonghai.Problems and comprehensive control of power system harmonics[J].Electric Power,1998,31(4):59-61(in Chinese).
[2]  容健刚,张文亮.电力系统谐波[M].武汉:华中理工大学出版社,1994.
[3]  孙仲康.快速傅里叶变换及其应用[M].北京:人民邮电出版社,1982.
[4]  张伏生,耿中行,葛耀中.电力系统谐波分析的高精度FFT算法[J].中国电机工程学报,1999,19(3):63-66. Zhang Fusheng,Geng Zhongxing,Ge Yaozhong.FFT algorithm with high accuracy for harmonic analysis in power system[J].Proceedings of the CSEE,1999,19(3):63-66(in Chinese).
[5]  庞浩,李东霞,俎云霄,等.应用FFT进行电力系统谐波分析的改进算法[J].中国电机工程学报,2003,23(6):50-54. Pang Hao,Li Dongxia,Zu Yunxiao,et al.An improved algorithm for harmonic analysis of power system using FFT technique [J].Proceedings of the CSEE,2003,23(6):50-54(in Chinese).
[6]  潘文,钱俞寿,周鹗.基于加窗差值FFT的电力谐波测量理论(II)双插值FFT理论[J].电工技术学报,1994,9(2):53-56.
[7]  赵文春,马伟明,胡安.电机测试中谐波分析的高精度FFT算法[J].中国电机工程学报,2001,21(12):83-87. Zhao Wenchun,Ma Weiming,Hu An.FFT algorithm with high accuracy for harmonic analysis in electric machine[J].Proceedings of the CESS,2001,21(12):83-87(in Chinese).
[8]  潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论(I)窗函数研究[J].电工技术学报,1994,9(1):50-54.
[9]  薛蕙,杨仁刚.利用Morlet连续小波变换实现非整次谐波的检测[J].电网技术,2002,26(12):41-44. Xue Hui,Yang Rengang.Morlet wavelet based detection of noninteger harmonics[J].Power System Technology,2002,26(12):41-44(in Chinese).
[10]  陈祥训.Bd小波的滤波参数与小波变换快速算法[J].电网技术,1999,23(8):44-50. Chen Xiangxun.Fast algorithms of filter coefficients and wavelet transform for Bd wavelets[J].Power System Technology,1999,23(8):44-50(in Chinese).
[11]  Moreno Saiz V M,Barros Guadalupe J.Application of kalman filtering for continuous real-time tracking of power system harmonics[J].IEE Proceedings Generation Transmission and Distribution,1997,144(l):13-20.
[12]  Nguyen T T.Parametric harmonic analysis[J].IEE Proceedings Generation Transmission and Distribution,1997,144(1):21-25.
[13]  Chan Y T,Plant J B.A parameter estimation approach to estimation of frequencies of sinusoids[J].IEEE Trans. Acoust. Speech & Signal Process,1981,29(2):214-219.
[14]  Lin H C,Lee C S.Enhanced FFT-based parametric algorithm for simultaneous multiple harmonics analysis[J].IEE Proc. Generation Transmission and Distribution,2001,148(3):209-214.
[15]  马秉伟,刘会金,周莉,等.一种基于自回归模型的间谐波谱估计的改进算法[J].中国电机工程学报,2005,25(15):79-83. Ma Bingwei,Liu Huijin,Zhou Li,et al.An improved algorithm of interharmonic spectral estimation based on ar model[J].Proceedings of the CESS,2005,25(15):79-83(in Chinese).
[16]  王志群,朱守真,周双喜.基于Pisarenko谐波分解的间谐波估算方法[J].电网技术,2004,28(15):72-77. Wang Zhiqun,Zhu Shouzhen,Zhou Shuangxi.Inter-harmonics estimation by Pisarenko harmonic decomposition method[J].Power System Technology,2004,28(15):72-77(in Chinese).
[17]  Wu Wei,Feng Guorui,Li Zhengxue,et al.Deterministic convergence of on online gradient method for BP netural networks[J].IEEE Transactions on Neural Networks,2005,16(3):533-540.
[18]  Guillerm. T J,Cotter. N E.A diffusion process for global optimization in neural networks[A].Seattle WA:Proceedings IEEE INNS International Joint Conference,1991.
[19]  Jiang xiaohua,Ji King,Ali Emadi.A power harmonics detection approach based on the least squares energy minimization principle[A].Busan Korea:The 30th Annual Conference of the IEEE,2004.
[20]  石敏,吴正国,尹为民.基于多信号分类法和普罗尼法的间谐波参数估计[J].电网技术,2005,29(15):81-84. Shi Min,Wu Zhengguo,Yin Weimin.Inter-harmonic parameter estimation based on multi-signal classification and prony method[J].Power System Technology,2005,29(15):81-84(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133