全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2007 

基于小波熵权和支持向量机的高压输电线路故障分类方法

, PP. 22-26

Keywords: 故障识别,小波分析,熵权,支持向量机(SVM),电力系统,高压输电线路

Full-Text   Cite this paper   Add to My Lib

Abstract:

高压输电线路故障类型的正确识别是进行故障定位和事故分析的前提。为此,作者提出一种分层的故障类型识别方法,首先根据线路故障时三相电流小波熵权分布曲线相互间距离的差异、距离之和进行故障的初步归类,构造表征不同故障类别的样本,然后采用支持向量机算法对样本进行训练,得到识别不同故障类型的最优分类面。仿真结果表明该方法识别速度快,克服了常规线性分类方法的局限性,且故障识别精度不受系统运行方式、过渡电阻以及故障位置的影响,具有较强的通用性和实用性。

References

[1]  王晓茹,伍思涛,钱清泉.一种基于神经网络的高压输电线故障分类器[J].电力系统自动化,1998,22(11):28-31.
[2]  Wang Xiaoru,Wu Sitao,Qian Qingquan.A neural network fault classifier for HV transmission line[J].Automation of Electric Power Systems,1998,22(11):28-31(in Chinese).
[3]  姜惠兰,崔虎宝,刘飞,等.基于模糊逻辑和支持向量机的高压输电线路故障分类器[J].中国电力,2005,33(3):14-16.
[4]  Jiang Huilan,Cui Hubao,Liu Fei,et al.High voltage transmission line fault classification based on fuzzy logic and support vector machines [J].Electric Power,2005,33(3):14-16(in Chinese).
[5]  张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):33-42.
[6]  Zhang Xuegong.Introduction to statistical learning theory and support vector machines[J].Acta Automatica Sinica,2000,26(1):33-42(in Chinese).
[7]  何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J].中国电机工程学报,2005,25(5):38-43.
[8]  He Zhengyou,Cai Yumei,Qian Qingquan.A study of wavelet entropy theory and its application in electric power system fault detection [J].Proceedings of the CSEE,2005,25(5):38-43(in Chinese).
[9]  王安丽,史志富,张安.基于熵的空中目标识别模型及应用[J].火力与指挥控制,2005,30(2):110-112.
[10]  Wang Anli,Shi Zhifu,Zhang An.Model and application to target recognition of based on entropy[J].Fire Control & Command Control,2005,30(2):110-112(in Chinese).
[11]  张斌,何正友,钱清泉.基于小波能量熵和模糊逻辑的故障选相元件[J].电网技术,2006,30(15):30-35.
[12]  Zhang Bin,He Zhengyou,Qian Qingquan.A faulty phase selector based on wavelet energy entropy and fuzzy logic[J].Power System Technology,2006,30(15):30-35(in Chinese).
[13]  何正友,陈小勤,罗国敏,等.基于暂态电流小波熵权的输电线路故障选相方法[J].电力系统自动化,2006,30(21):39-43.
[14]  He Zhengyou,Chen Xiaoqin,Luo Guomin,et al.Faulted phase selecting method of transmission lines based on wavelet entropy weight of transient current[J].Automation of Electric Power Systems,2006,30(21):39-43(in Chinese).
[15]  胡国胜.支持向量机算法及应用[J].现代电子技术,2005,(3):106-109.
[16]  Hu Guosheng.An overview of support vector machines algorithms and its application[J].Modern Electronic Technique,2005,(3):106-109(in Chinese).
[17]  陆文聪,陈念贻,叶晨洲,等.支持向量机算法和软件ChemSVM介绍[J].计算机应用与化学,2002,19(6):697-702.
[18]  Lu Wencong,Chen Nianyi,Ye Chenzhou,et al.Introduction to the algorithm of support vector machine and the software ChemSVM [J].Computers and Applied Chemistry,2002,19(6):697-702(in Chinese).
[19]  许涛,贺仁睦,王鹏,等.基于统计学习理论的电力系统暂态稳定评估[J].中国电机工程学报,2003,23(11):51-55.
[20]  Wang Zhongmin,Le Quanming,Yang Guangliang,et al.Fault classification for UHV grids by using lifting wavelet and neural network[J].East China Electric Power,2006,34(2):31-35(in Chinese).
[21]  Xu Tao,He Renmu,Wang Peng,et al.Power system transient stability assessment based on statistical learning theory[J].Proceedings of the CSEE,2003,23(11):51-55(in Chinese).
[22]  白卫东,严建华,池涌.PCA 和 SVM 在火焰检测中的应用研究[J].中国电机工程学报,2004,24(2):185-190.
[23]  Bai Weidong,Yan Jianhua,Chi Yong.A research on application of PCA and SVM to flame monitoring [J].Proceedings of the CSEE,2004,24(2):185-190(in Chinese).
[24]  杨宁,周海东,胡成,等.高等数学[M].成都:西南交通大学出版社,2003.
[25]  黄勇,郑春颖,宋忠虎.多类支持向量机算法综述[J].计算技术与自动化,2005,24(4):61-63.
[26]  Huang Yong,Zheng Chunying,Song Zhonghu.Multi-class support vector machines algorithm summarization[J].Computing Technology and Automation,2005,24(4):61-63(in Chinese).
[27]  燕孝飞,葛洪伟,颜七笙.RBF核SVM及其应用研究[J].计算机工程与设计,2006,27(11):1996-1997.
[28]  Yan Xiaofei,Ge Hongwei,Yan Qisheng.SVM with RBF kernel and its application research[J].Computer Engineering and Design,2006,27(11):1996-1997(in Chinese).
[29]  王忠民,乐全明,杨光亮,等.基于提升小波和神经网络的超高压电网故障类型识别[J].华东电力,2006,34(2):31-35.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133