全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2007 

基于粗糙径向基函数网络的船舶发电机励磁控制

, PP. 66-71

Keywords: 粗糙集,神经网络,船舶发电机,励磁系统,神经比例–积分–微分控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

粗糙集和神经网络的集成技术综合利用了粗糙集理论数据分析与决策规则自动提取的优点以及神经网络对非线性函数任意逼近的能力,为复杂非线性系统的建模辨识提供了一种新的途径。文中提出了一种基于粗糙径向基(radialbasisfunction,RBF)网络的船舶发电机励磁神经比例–积分–微分(proportion-integral-differential,PID)自适应控制方法,通过粗糙RBF网络离线学习和在线辨识对神经PID控制器的参数进行自适应调节。仿真结果表明,该控制方法与传统PID控制相比具有超调量小、调节速度快等优点。

References

[1]  王剑,毛宗源,许敬涛.发电机励磁及调速综合控制可行性分析[J].中国电机工程学报,2006,26(13):74-78.
[2]  Wang Jian,Mao Zongyuan,Xu Jingtao.A feasibility analysis of integrated generator excitation and governing control[J].Proceedings of the CSEE,2006,26(13):74-78(in Chinese).
[3]  姜惠兰,魏强,唐晓骏.基于模糊神经网络的发电机励磁控制器的研究[J].电网技术,2005,29(1):50-55.
[4]  Jiang Huilan,Wei Qiang,Tang Xiaojun.Study on the generator excitation controller based on fuzzy neural network[J].Power System Technology,2005,29(1):50-55(in Chinese).
[5]  王莉,曹小庆.电励磁双凸极无刷直流发电机非线性PI调压技术的研究[J].中国电机工程学报,2006,26(5):153-158.
[6]  Huang Manlei.Simulation research on H∞ voltage regulator for synchronous generator of a power station[J].Journal of Harbin Engineering University,2004,25(2):162-166(in Chinese).
[7]  Lu Qiang,Sun Yuanzhang,Mei S W.Nonlinear control systems and power system dynamics[M].Boston:Kluwer Academic Publishers,2001.
[8]  刘金琨.先进PID控制及其Matlab仿真[M].北京:电子工业出版社,2003.
[9]  Pawlak Z.Rough sets and intelligent data analysis[J].Information Sciences,2002,(147):1-12.
[10]  刘清.Rough集及Rough推理[M].北京:科学出版社,2001.
[11]  张文修.Rough集理论与方法[M].北京:科学出版社,2001.
[12]  Wang Xihuai,Zhang Tengfei.Ship Synchronous generator modeling based on RST and RBF neural networks[C].Advances in Neural Networks,LNCS,Springer- Verlag,Berlin Heidelberg New York,2006.
[13]  黎明,张化光.基于粗糙集的神经网络建模方法研究[J].自动化学报,2002,28(1):27-33.
[14]  Li Ming,Zhang Huaguang.Research on the method of neural network modeling based on rough sets theory[J].ACTA Automatica Sinica,2002,28(1):27-33(in Chinese).
[15]  Lin W M,Yang C D,Lin J H,et al.A fault classification method by RBF neural network with OLS learning procedure[J].IEEE Trans on Power Delivery,2001,16(4):473-477.
[16]  Wang Li,Cao Xiaoqing.Research of nonlinear pi voltage regulation for doubly salient brushless DC generator[J].Proceedings of the CSEE,2006,26(5):153-158(in Chinese).
[17]  张帆,徐政.励磁系统及电力系统稳定器对发电机组次同步谐振阻尼特性的影响[J].电网技术,2006,30(18):14-19.
[18]  Zhang Fan,Xu Zheng.Effect of exciter and power system stabilizer on subsynchronous resonance damping[J].Power System Technology,2006,30(18):14-19 (in Chinese).
[19]  徐敏,林辉.同步发电机的迭代学习励磁控制器的仿真研究[J].电网技术,2005,29(12):81-84.
[20]  Xu Min,Lin Hui.Simulation of excitation controller of synchronous generator based on iterative learning control law[J].Power System Technology,2005,29(12):81-84 (in Chinese).
[21]  夏长亮,修杰.基于RBF神经网络非线性预测模型的开关磁阻电机自适应PID控制[J].中国电机工程学报,2007,27(3):57-62.
[22]  Xia ChangLiang,Xiu Jie.RBF ANN nonlinear prediction model based adaptive PID control of switched reluctance motor [J].Proceedings of the CSEE,2007,27(3):57-62 (in Chinese).
[23]  温志萍,李鹏,白茜.基于模糊参数自校正PID控制的动态不间断电源补偿量直接检测法[J].电网技术,2006,30(21):56-61.
[24]  Wen Zhiping,Li Peng,Bai Qian.Direct detection method of compensation signal for dynamic uninterruptible power supply based on fuzzy parameters self-correcting PID control[J].Power System Technology,2006,30(21):56-61(in Chinese).
[25]  施亿生.船舶电站[M].北京:国防工业出版社,1983.
[26]  施伟锋,陈子顺,汤天浩.船舶发电机励磁系统的CMAC神经网络并行控制[J].电网技术,2005,29(4):31-35.
[27]  Shi Weifeng,Chen Zishun,Tang Tianhao.CMAC neural network parallel control for marine generator excitation system[J].Power System Technology,2005,29(4):31-35(in Chinese).
[28]  黄曼磊.船舶电站同步发电机H∞调压器的仿真研究[J].哈尔滨工程大学学报,2004,25(2):162-166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133