全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2007 

大停电自组织临界特征的若干问题探讨

, PP. 42-46

Keywords: 电力系统,连锁故障,大停电,自组织临界,幂率分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

对电力系统大停电的自组织临界特性的若干重要的问题进行了详细的讨论,包括大停电发生规模的幂率分布特征,分形特征及1/f噪声特征。该文利用国内的一些资料数据对我国电力系统的大停电的概率分布进行了回归分析,并在国内外研究工作的基础上从大停电持续时间分布的角度,对大停电的1/f噪声特性进行了近似证明,其结果和Bak等人在理想沙堆模型上得到的结果基本一致。

References

[1]  韩祯祥,曹一家.电力系统的安全性及其防治措施[J].电网技术, 2004,28(8):1-6.
[2]  Han Zhenxiang,Cao Yijia.Power system security and its precention[J].Power System Technology,2004,28(8):1-6(in Chinese).
[3]  张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(7):1-6.
[4]  Zhang Baohui.Strengthen the protection relay and urgency control system to improve the capability of security in the interconnected power network[J].Proceedings of the CSEE,2004,24(7):1-6(in Chinese).
[5]  陈为化,江全元,曹一家,等.基于风险理论的复杂电力系统脆弱性评估[J].电网技术,2005,29(4):12-17.
[6]  Chen Weihua,Jiang Quanyuan,Cao Yijia,et al. Risk-based vulnerability assessment in complex power system[J].Power System Technology,2005,29(4):12-17(in Chinese).
[7]  孙可,韩祯祥,曹一家.复杂电网连锁故障模型评述[J].电网技术,2005,29(13):1-9.
[8]  Sun Ke,Han Zhenxiang,Cao Yijia. Review on models of cascading failure in complex power grid[J].Power System Technology,2005,29(13):1-9(in Chinese).
[9]  鲁宗相.电网复杂性及大停电事故的可靠性研究[J].电力系统自动化,2005,29(12):93-97.
[10]  Lu Zongxiang.Survery of the research on the complexity of power grids and reliability analysis of blackouts[J].Automation of Electric Power Systems,2005,29(12):93-97(in Chinese).
[11]  曹欣,张毅威,郭琼.电网连锁反应故障研究新进展[J].中国电力,2005,38(7):1-5.
[12]   Cao Xin,Zhang Yiwei,Guo Qiong.Progress in the research of power systen cascading failures[J].Electric Power,2005,38(7):1-5(in Chinese).
[13]  占勇,程浩忠,熊虎岗.电力网络连锁故障研究综述[J].电力自动化设备,2005,25(9):93-98.
[14]   Zhan Yong, Cheng Haozhong,Xiong Hugang.Review of cascading failures in electric power network[J].Electric Power Automation Equipment,2005,25(9):93-98(in Chinese).
[15]  Carreras B A,Newman D E,Dobson I,et al.Initial evidence for self-organized criticality in electric power system blackouts [C].Hawaii International Conference on System Science, Hawaii,2000.
[16]  Carreras B A,Newman D E,Dobson I,et al.Evidence for self-organized criticality in electric power system blackouts [C].Hawaii International Conference on System Science,Hawaii,2001.
[17]  Dobson I,Carreras B A,Lynch V E,et al.An initial model for complex dynamics in electric power system blackouts[C].Hawaii International Conference on System Science,Hawaii,2001.
[18]  Dobson I,Carreras B A,Newman D E.A probabilistic loading dependent model of cascading failure and possible implications for blackouts[C].Hawaii International Conference on System Science,Hawaii,2003.
[19]  Dobson I,Carreras B A,Newman D E.A branching process approximation to cascading load-dependent system failure[C].35th Hawaii International Conference on System Science,Hawaii,2004.
[20]  于群,郭剑波.中国电网停电事故统计与自组织临界性特征[J].电力系统自动化,2005,29(2):16-21.
[21]  Yu Qun,Guo Jianbo. Statistics and self-organized criticality characters of blackouts in China electric power systems[J]. Automation of Electric Power Systems,2005,29(2):16-21(in Chinese).
[22]  丁明,韩平平.基于复杂系统理论的电网连锁故障研究[J].合肥工业大学学报(自然科学版),2005,28(9):1047-1052.
[23]  Ding Ming,Han Pingping. Research on power system cascading failure with complex system theory[J].Journal of Hefei University of Technology(Natural Science),2005,28(9):1047-1052(in Chinese).
[24]  曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象[J].电力系统自动化,2005,29(15):1-5.
[25]  Cao Yijia,Jiang Quanyuan,Ding Lijie.Self-organized criticality phenomenon for power system blackouts[J].Automation of Electric Power Systems,2005,29(15):1-5(in Chinese).
[26]  曹一家,丁理杰,江全元,等.基于协同学原理的电力系统大停电预测模型[J].中国电机工程学报,2005,25(18):13-19.
[27]  Cao Yijia,Ding Lijie,Jiang Quanyuan,et al.A predictive model of power system blackout based on synergetic theory[J].Proceedings of the CSEE,2005,25(18):13-19(in Chinese).
[28]  Bak P,Tang C,Wiesenfeld K. Self-organized criticality:an explanation of 1/f noise[J].Physical Review Letters,1987,59(1):381-384.
[29]  Bak P,Tang C,Wiesenfeld K.Self-organized criticality[J].Physical Review,1988,38(1):364-375.
[30]  刘适达,梁福明,刘式适,等.自然科学中的混沌和分形[M].北京:北京大学出版社,2003.
[31]  史玲娜,董光先,鲁皓.自组织临界性的相空间重构[J].四川大学学报(自然科学版),2005,42(3):518-522.
[32]  Shi Lingna, Dong Guangxian, Lu Hao.Phase space reconstruction of self-organized criticality[J].Journal of Sichuan University (Natural Science Edition),2005,42(3):518-522(in Chinese).
[33]  陈彦光,王义民.分形、1/f涨落与旅游风景地的美学实质[J].大自然探索,1999,18(69):51-54.
[34]  Chen Yanguang,Wang Yimin.Fractal,1/f fluctuation and the aesthetic essence of tourist resorts[J].Exploration of Nature,1999,18(69):51-54(in Chinese).
[35]  何飞,梅生伟,薛安成,等.基于直流潮流的电力系统停电分布及自组织临界性分析[J].电网技术,2006,30(14):7-12.
[36]  He Fei,Mei Shengwei,Xue Ancheng,et al.Blackouts distribution and self-organized criticality of power system based on DC power flow[J].Power System Technology,2006,30(14):7-12(in Chinese).
[37]  梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析[J].电力系统自动化,2006,30(13):1-5.
[38]  Mei Shengwei,Weng Xiaofeng,Xue Ancheng,et al.Blackout model based on OPF and its self-organized criticality[J].Automation of Electric Power Systems,2006,30(13):1-5(in Chinese).
[39]  郝柏林.混沌与分形[M].上海:上海科学技术出版社,2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133