全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2014 

考虑预报风速与功率曲线因素的风电功率预测不确定性估计

DOI: 10.13335/j.1000-3673.pst.2014.02.029, PP. 463-468

Keywords: 风电功率预测,不确定性估计,数值天气预报,功率曲线

Full-Text   Cite this paper   Add to My Lib

Abstract:

对影响风电功率预测不确定性的数值天气预报风速与风电机组功率曲线进行分析。分别从时间和风速水平角度对预报风速的不确定性进行了定量评估,提出了2种风速预报的综合不确定性评估模型;分析了风机理论功率曲线、实际运行功率曲线的不确定性以及功率曲线的固有特性对功率预测结果不确定性的影响;在此基础上提出了一种功率预测不确定评估的工程化模型。算例分析结果验证了该模型在工程应用中的可靠性和准确性。

References

[1]  Giebel G, Landberg G, Kariniotakis G.State-of-the-art on methods and software tools for short-term, prediction of wind energy production[C]//European Wind Energy Conference & Exhibition.Madrid, Spain:IEEE, 2003:40-47.
[2]  中国电力科学研究院.GB/T 19963—2011风电场接入电力系统技术规定[S].北京:中国标准出版社, 2012.
[3]  国家能源局.风电场功率预测预报管理暂行办法[R].北京:国家能源局, 2011.
[4]  Lange M.On the uncertainty of wind power predictions-Analysis of the forecast accuracy and statistical distribution of errors[J].Transactions of the ASME-N-Journal of Solar Energy Engineering, 2005, 127(2):177-184.
[5]  Lange M, Heinemann D.Relating the uncertainty of short-term wind speed predictions to meteorological situations with methods from synoptic climatology[C]//Proceedings of the European Wind Energy Conference & Exhibition.Madrid:IEEE, 2003.
[6]  Nielsen H A, Madsen H, Nielsen T S.Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts[J].Wind Energy, 2006, 9(1-2):95-108.
[7]  丁士晟.地方模式输出统计预报方法[M].北京:气象出版社, 1989:60-81.
[8]  中国风能协会.2012年中国风电装机容量统计[R].北京:中国风能协会, 2011.
[9]  迟永宁, 刘燕华, 王伟胜, 等.风电接入对电力系统的影响[J].电网技术, 2007, 31(3):77-81.Chi Yongning, Liu Yanhua, Wang Weisheng, et al.Study on impact of wind power integration on power system[J].Power System Technology, 2007, 31(3):77-81(in Chinese).
[10]  Carney J G, Cunningham P, Bhagwan U.Confidence and prediction intervals for neural network ensembles[C]//International Joint Conference on Neural Networks.Washington:IEEE, 1999:1215-1218.
[11]  Hodge B, Milligan M.Wind power forecasting error distributions over multiple timescales[C]//Power and Energy Society General Meeting.Detroit, Michigan, United State:USDOE, 2011:1-11.
[12]  Bludszuweit H, Domínguez-Navarro J A, Llombart A.Statistical analysis of wind power forecast error[J].IEEE Transactions on Power Systems, 2008, 23(3):983-991.
[13]  刘永前, 史洁, 杨勇平, 等.基于预测误差分布特性的风电场短期功率预测不确定性研究[J].太阳能学报, 2012, 33(12):2179-2184.Liu Yongqian, Shi Jie, Yang Yongping, et al.Uncertainty analysis of short term wind power forecasting based on error characteristics statistics[J].Acta Energiae Solaris Sinica, 2012, 33(12):2179-2184(in Chinese).
[14]  韩爽, 刘永前, 杨勇平, 等.风电场超短期功率预测及不确定性分析[J].太阳能学报, 2011, 32(8):1251-1256.Han Shuang, Liu Yongqian, Yang Yongping, et al.Uncertainty analysis of short term wind power forecasting based on error characteristics statistics[J].Acta Energiae Solaris Sinica, 2011, 32(8):1251-1256(in Chinese).
[15]  王铮, 王伟胜, 刘纯, 等.基于风过程方法的风电功率预测结果不确定性估计 [J].电网技术, 2013, 37(1):242-247.Wang Zheng, Wang Weisheng, Liu Chun, et al.Uncertainty estimation of wind power prediction result based on wind process method[J].Power System Technology, 2013, 37(1):242-247(in Chinese).
[16]  Pinson P, Kariniotakis G.On-line assessment of prediction risk for wind power production forecasts[J].Wind Energy, 2004, 7(2):119-132.
[17]  Lilliefors H W.On the Kolmogorov-Smirnov test for normality with mean and variance unknown[J].Journal of the American Statistical Association, 1967, 62(318):399-402.
[18]  姚立忠, 李太福, 易军, 等.神经网络模型的透明化及输入变量约简[J].计算机科学, 2012, 39(9):247-251.Yao Lizhong, Li Taifu, Yi Jun, et al.Visualize black-box of NN model and its application in dimensionality reduction[J].Computer Science, 2012, 39(9):1251-1256(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133