Klöckl B, Papaefthymiou G.Multivariate time series models for studies on stochastic generators in power systems[J].Electric Power Systems Research, 2010, 80(3):265-276.
[2]
Peiyuan C, Pedersen T, Bak-Jensen B, et al.ARIMA-based time series model of stochastic wind power generation[J].IEEE Trans on Power Systems, 2010, 25(2):667-676.
[3]
Sturt A, Strbac G.Efficient stochastic scheduling for simulation of wind-integrated power systems[J].IEEE Trans on Power Systems, 2012, 27(1):323-334.
[4]
Tina G, Gagliano S, Raiti S.Hybrid solar/wind power system probabilistic modelling for long-term performance assessment[J].Solar Energy, 2006, 80(5):578-588.
[5]
吴俊利, 张步涵, 王魁.基于Adaboost的BP神经网络改进算法在短期风速预测中的应用[J].电网技术, 2012, 36(9):221-225.Wu Junli, Zhang Buhan, Wang Kui.Application of adaboost-based BP neural network for short-term wind speed forecastp[J].Power System Technology, 2012, 36(9):221-225(in Chinese).
[6]
Papaefthymiou G, Klockl B.MCMC for wind power simulation[J].IEEE Trans on Energy Conversion, 2008, 23(1):234-240.
[7]
Sturt A, Strbac G.Time series modelling of power output for large-scale wind fleets[J].Wind Energy, 2011, 14(8):953-966.
[8]
Kennedy S, Rogers P.A probabilistic model for simulating long-term wind-power output[J].Wind Engineering, 2003, 27(3):167-181.
[9]
Gibescu M, Brand Arno J, Kling-Wil L.Estimation of variability and predictability of large-scale wind energy in the Netherlands[J].Wind Energy, 2009, 12(3):241-260.
[10]
Ummels B C, Pelgrum E, Kling W L.Integration of large-scale wind power and use of energy storage in the netherlands' electricity supply[J].IET Renewable Power Generation, 2008, 2(1):34-46.
Spall J C.Estimation via Markov chain Monte Carlo[J].IEEE Control Systems, 2003, 23(2):34-45.
[14]
石文辉, 别朝红, 王锡凡.大型电力系统可靠性评估中的马尔可夫链蒙特卡洛方法[J].中国电机工程学报, 2008, 28(4):9-15.Shi Wenhui, Bie Zhaohong, Wang Xifan.Applications of Markov chain Monte Carlo in large-scale system reliability evaluation[J].Peoceedings of the CSEE, 2008, 28(4):9-15(in Chinese).
[15]
Rong C, Liu J S, Xiaodong W.Convergence analyses and comparisons of Markov chain Monte Carlo algorithms in digital communications[J].IEEE Trans on Signal Processing, 2002, 50(2):255-270.
[16]
Berchtold A, Raftery-Adrian E.The mixture transition distribution model for high-order Markov chains and non-Gaussian time series[J].Statistical Science, 2002, 17(3):328-356.
[17]
Torres J L, García A, De Blas M, et al.Forecast of hourly average wind speed with ARMA models in Navarre (Spain)[J].Solar Energy, 2005, 79(1):65-77.
[18]
Shamshad A, Bawadi M A, Wan-Hussin W M A, et al.First and second order Markov chain models for synthetic generation of wind speed time series[J].Energy, 2005, 30(5):693-708.
[19]
Negra N B, Holmstrøm O, Bak-Jensen B, et al.Model of a synthetic wind speed time series generator[J].Wind Energy, 2008, 11(2):193-209.
[20]
蔡德福, 钱斌, 陈金富, 等.含电动汽车充电负荷和风电的电力系统动态概率特性分析[J].电网技术, 2013, 37(3):590-596.Cai Defu, Qian Bin, Chen Jinfu, et al.Analysis on dynamic probabilistic characteristic of power grid connected withelectric vehicle charging load and wind power[J].Power System Technology, 2013, 37(3):590-596 (in Chinese).
[21]
Poggi P, Notton G, Muselli M, et al.Stochastic study of hourly total solar radiation in Corsica using a Markov model[J].International Journal of Climatology, 2000, 20(14):1843-1860.
[22]
汪海瑛, 白晓民, 马纲.并网光伏电站的发电可靠性评估[J].电网技术, 2012, 36(10):1-5.Wang Haiying, Bai Xiaomin, Ma Gang.Reliability assessment of grid-integrated solar photovoltaic system[J].Power System Technology, 2012, 36(10):1-5 (in Chinese).