全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2011 

采用改进型多目标粒子群算法的电力系统环境经济调度

, PP. 139-144

Keywords: 环境经济调度,多目标粒子群,拥挤距离,Pareto最优前沿,小概率变异

Full-Text   Cite this paper   Add to My Lib

Abstract:

电力系统多目标环境经济调度要求在满足发电成本最小的同时发电厂的污染气体排放也最小,为此提出了基于Pareto占优策略和拥挤距离排序方法的改进型粒子群算法求解该多目标问题。采用容量可动态调整的外部存档集合存储当前Pareto最优解,利用Pareto占优策略确定个体最优位置,进而根据粒子拥挤距离确定全局最优位置,并设置了动态惯性权重,引入了小概率变异机制,提高了算法搜索能力。算例结果验证了该算法的有效性。

References

[1]  师彪,李郁侠,于新花,等.基于改进粒子群-径向基神经网络模型的短期电力负荷预测[J].电网技术,2009,33(17):180-184.
[2]  Abido M A.Environmental/economic power dispatch using multiobjective evolutionary algorithms[J].IEEE Trans on Power Systems,2003,18(4):1529-1537.
[3]  Granelli G P,Montagna M,Pasini G L,et al.Emission constrained dynamic dispatch[J].Electric Power Systems Research,1992,24(1):55-64.
[4]  Chang C S,Wong K P,Fan B.Security constrained multi-objective generation dispatch using bicriterion global optimization[J].IEE Proceedings of Generation,Transmission and Distribution,1995,142(4):406-414.
[5]  Srinivas N,Deb K.Multi-objective function optimization using non-dominated sorting genetic algorithms[J].Evolutionary Computation,1995,2(3):221-248.
[6]  Deb K,Pratap A,Agarwal S,et al,A fast and elitist multi-objective genetic algorithm:NSGA-II[J].IEEE Trans on Evolutionary Computation,2002,6(2):182-197.
[7]  鲁忠燕,邓集祥,汪永红.基于免疫粒子群算法的电力系统无功优化[J].电网技术,2008,32(24):55-59.
[8]  Lu Zhongyan,Deng Jixiang,Wang Yonghong.Reactive power optimization based on particle swarm optimization algorithm with immunity[J].Power System Technology,2008,32(24):55-59(in Chinese).
[9]  汪新星,张明.基于改进微粒群算法的水火电力系统短期发电计划优化[J].电网技术,2004,28(12):16-19.
[10]  Wang Xinxing,Zhang Ming.Short-term scheduling optimization of hydro-thermal power systems based on refined particle swarm algorithm[J].Power System Technology,2004,28(12):16-19(in Chinese).
[11]  Shi Biao,Li Yuxia,Yu Xinhua,et al.Short-term load forecasting based on modified particle swarm optimization and radial basis function neural network model[J].Power System Technology,2009,33(17):180-184(in Chinese).
[12]  杨波,赵遵廉,陈允平,等.一种求解最优潮流问题的改进粒子群优化算法[J].电网技术,2006,11(5):6-10.
[13]  Yang Bo,Zhao Zunlian,Chen Yunping,et al.An improved particle swarm optimization algorithm for optimal power flow problem[J].Power System Technology,2006,11(5):6-10(in Chinese).
[14]  赵辉,刘鲁源,张更新.基于微粒群优化算法的最优电力系统稳定器设计[J].电网技术,2006,30(9):32-35.
[15]  Zhao Hui,Liu Luyuan,Zhang Gengxin.Optimal design of power system stabilizer using particle swarm optimization[J].Power System Technology,2006,30(9):32-35(in Chinese).
[16]  Coello C,Carlos A,Lechuga M S.MOPSO:a proposal for multiple objective particle swarm optimization[C]//Proceedings of IEEE Congress on Evolutionary Computation.USA,Honolulu:IEEE,2002:1051-1056.
[17]  Hu X H,Eberhart R C.Multi-objective optimization using dynamic neighborhood particle swarm optimization[C]//Proceedings of IEEE Congress on Evolutionary Computation.USA,Honolulu:IEEE,2002:1677-1681.
[18]  Li X D.A nondominated sorting particle swarm optimizer for multi-objective optimization[C]//Proceedings of Genetic and Evolutionary Computation (GECCO 2003).Germany,Berlin,2003:37-48.
[19]  Alvarez-Benitez J,Everson R,Fieldsend J.A MOPSO algorithm based exclusively on Pareto dominance concepts[C]//The 3rd International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005).Mexico,Guanajuato,2005:459-473.
[20]  Kennedy J,Eberhart R.Particle swarm optimization[C]// Proceedings of the Fourth IEEE International Conference on Neural Networks.Australia,Perth:IEEE,1995:1942-1948.
[21]  Veldhuizen D,Lamont G.Multi-objective evolutionary algorithms:analyzing the state of the art[J].IEEE Transactions on Evolutionary Computation,2000,18(2):125-147.
[22]  Parsopoulos K E,Vrahatis M N.Particle swarm optimization method in multi-objective problems[C]//ACM Symposium on Applied Computing.Spain,Madrid,2002:603-607.
[23]  Bartz-Beielstein T,Limbourg P,Mehnen J,et al.Particle swarm optimizers for pareto optimization with enhanced archiving techniques[C]//IEEE Congress on Evolutionary Computation.Australia,Canberra:IEEE,2003:1780-1787.
[24]  Peng C H,Sun H J,Guo J F.Multi-objective optimal PMU placement using a non-dominated sorting differential evolution algorithm[J].Electrical Power and Energy Systems,2010,32(8):886-892.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133