全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2012 

基于贝叶斯框架和回声状态网络的日最大负荷预测研究

, PP. 82-86

Keywords: 回声状态网络,贝叶斯框架,日最大负荷,负荷预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

为克服神经网络中的伪回归问题,对标准的回声状态网络进行改进,用贝叶斯理论提高网络的泛化能力。在实证算例分析中,采用某地区的实际负荷数据和相关气候数据,对该地区的日最大负荷进行预测,验证所提方法的有效性和适用性。对比试验的预测结果表明,改进的回声状态网络比标准回声状态网络和前馈神经网络预测效果更精确,网络泛化能力更强。

References

[1]  Ferreira A.A,Ludermir T.B.Using reservoir computing for forecasting time series: brazilian case study[C]//Proceedings-8th International Conference on Hybrid Intelligent Systems.Barcelona,Spain:IEEE,2008:602-607.
[2]  Lauret P,Fock E,Randrianarivony R N,et al.Bayesian neural network approach to short time load forecasting [J].Energy Conversion and Management,2008,49(5):1156-1166.
[3]  牛东晓,赵磊,张博,等.粒子群优化灰色模型在负荷预测中的应用[J].中国管理科学,2007,15(1):69-73.Niu Dongxiao,Zhao Leai,Zhang Bo,et al.The application of particle swarm opetimization based grey model to power load forecasting[J].Chinese Journal of Management Science,2007,15(1):69-73(in Chinese).
[4]  于海燕,张凤玲.基于模糊神经网络的电力负荷短期预测[J].电网技术,2007,31(3):68--72.Yu Haiyan,Zhang Fengling.Short-term load forecasting based on fuzzy neural network[J].Power System Technology,2007,31(3):68--72(in Chinese).
[5]  陈刚,周杰,张雪君,等.基于BP与RBF级联神经网络的日负荷预测[J].电网技术,2009,33(12):101-105.Chen Gang,Zhou Jie,Zhang Xuejun,et al.A daily load forecasting method based on cascaded back propagation and radial basis function neural networks[J].Power System Technology,2009,33(12):101-105(in Chinese).
[6]  方仍存,周建中,彭兵,等.电力负荷混沌动力特性及其短期预测[J].电网技术,2008,32(4):61-66.Fang Rengcun,Zhou Jianzhong,Peng Bing,et al.Chaotic dynamics of power load and its short-term forecasting[J].Power System Technology,2008,32(4):61-66(in Chinese).
[7]  张金良,谭忠富.基于经验模态分解和计量经济学模型及混沌模型的短期负荷预测[J].电网技术,2011,35(9):181-187.Zhang Jinliang,Tan Zhongfu.Short-term load forecasting based on empirical mode decomposition econometric model and chaotic model [J].Power System Technology,2011,35(9):181-187(in Chinese).
[8]  周建中,张亚超,李清清,等.基于动态自适应径向基函数网络的概率性短期负荷预测[J].电网技术,2010,34(3):37-41.Zhou Jianzhong,Zhang Yachao,Li Qingqing,et al.Probabilistic short-term load forecasting based on dynamic self-adaptive radial basis function network[J].Power System Technology,2010,34(3):37-41(in Chinese).
[9]  Paulin C.Reservoir computing approach to Great Lakes water level forecasting[J].Journal of Hydrology,2010,381(1-2):76-88.
[10]  Showhati H,Hejazi A.H,Elvasi S.Short term load forecasting using echo state networks[C]//2010 International Joint Conference on Neural Networks.Barcelona,Spain:IEEE,2010,15:1-5.
[11]  Song Q S,Zhao X M,Feng Z,et al.Hourly electric load forecasting algorithm based on echo state neural network[C]//2011 23rd Chinese Control and Decision Conference.Mianyang,China:IEEE,2011:3893-3897.
[12]  Li G,Shi J,Zhou J Y.Bayesian adaptive combineation of short-term wind speed forecasts from neural network models[J].Renewable Energy,2011,36(1):352-359.
[13]  Hippert H S,Taylor J W.An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting[J].Neural Networks,2010,23:386-395.
[14]  周曙,王晓茹,钱清泉.基于贝叶斯网的分布式电网故障诊断方法[J].电网技术,2010,34(9):76-81.Zhou Shu,Wang Xianru,Qian Qingquan.Bayesian networks based distributed fault diagnosis approach for power grids[J].Power System Technology,2010,34(9):76-81(in Chinese).
[15]  Islam M N,Sivakumar B.Characterization and prediction of runoff dynamics:a nonlinear dynamical view[J].Advances in Water Resources,2002,(25):179-190.
[16]  高山,单渊达.神经网络短期负荷预测输入变量选择新方法[J]..电力系统自动化,2001,22(11):41-44.Gao Shan,Shan Yuanda.Novel input variable selection for ANN short-term load forecasting[J].Automation of Electric Power Systems,2001,22(11):41-44(in Chinese).
[17]  王鹏,邰能灵,王波.针对气象因素的短期负荷预测修正方法[J]..电力系统自动化,2008,32(13):92-97.Wang Peng,Tai Nengling,Wang Bo.Ashort-term load forecasting correction method considering climatic factors[J].Automation of Electric Power Systems,2008,32(13):92-97(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133