全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2014 

风电随机出力的时间序列模型

DOI: 10.13335/j.1000-3673.pst.2014.09.016, PP. 2416-2421

Keywords: 风电出力,时间序列,时间相关性,概率分布,反变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种风电随机出力的时间序列模型,运用反变换方法将原始出力序列转换为平稳、正态序列,采用自回归移动平均模型对序列进行回归,再将模拟的正态序列转换回原始域,得到风电出力的模拟时间序列。运用该模型对风电出力序列进行模拟,结果同时满足风电出力的时间相关性、概率分布特性、时间分布特性以及波动特性,这说明该模型可用于风电出力不确定分析、电力系统随机优化以及风电储能系统优化运行等方面的研究。

References

[1]  Bouffard F,Galiana F D.Stochastic security for operations planning with significant wind power generation[J].IEEE Transactions on Power Systems,2008,23(2):306-316.
[2]  Papaefthymiou G.Integration of stochastic generation in power systems[D].Delft,The Netherlands:Delft University of Technology,2007.
[3]  Lun Y F I,Lam J C.A study of Weibull parameters using long-term wind observations[J].Renewable Energy,2000(20):145-53.
[4]  Celik A N.Assessing the suitability of wind speed distribution functions based on wind power density[J].Renewable Energy,2003(28):1563-74.
[5]  Boone A.Simulation of short-term wind speed forecast errors using a multi-variate ARMA(1,1) time-series model[D].Stockholm,Sweden:Royal Institute of Technology,2005.
[6]  Bludszuweit H,Domínguez-Navarro J A,Llombart A.Statistical analysis of wind power forecast error[J].IEEE Transactions on Power Systems,2008,23(3):983-991.
[7]  Papaefthymiou G,Klöckl B.MCMC for wind power simulation[J].IEEE Transactions on Energy Conversion,2008,23(1):234-240.
[8]  Shamshad A,Bawadi M A,Majid T A,et al.First and second order Markov chain models for synthetic generation of wind speed time series[J].Energy,2005(30):693-7081.
[9]  Morales J R,Minguez R,Conejo A J.A methodology to generate statistically dependent wind speed scenarios[J].Applied Energy,2010,87(3):843-855.
[10]  Brown B,Katz R,Murphy A.Time series models to simulate and forecast wind speed and wind power[J].Journal of Climate and Applied Meteorology,1984(23):1184-1195.
[11]  Chen P,Pedersen T,Bak-Jensen B,et al.ARIMA-based time series model of stochastic wind power generation[J].IEEE Transactions on Power Systems,2010,25(2):667-676.
[12]  Billinton R,Wangdee W.Reliability-based transmission reinforcement planning associated with large-scale wind farms[J].IEEE Transactions on Power Systems,2007,22(1):34-41.
[13]  Billinton R,Karki B,Karki R,et al.Unit commitment risk analysis of wind integrated power systems[J].IEEE Trans on Power Systems,2009,24(2):930-939.
[14]  Klöckl B.Impacts of energy storage on power systems with stochastic generation[D].Zürich,Switzerland:Swiss Federal Institute of Technology Zürich (ETH),2007.
[15]  Zhang N,Kang C,Kirschen D S,et al.Planning pumped storage capacity for wind power integration[J].IEEE Transactions on Sustainable Energy,2013,4(2):393-401.
[16]  Pinson P,Madsen H,Nielsen H A,et al.From probabilistic forecasts to statistical scenarios of short-term wind power production[J].Wind Energy,2009,12(1):51-62.
[17]  Zhang N,Kang C,Xu Q,et al.Modelling and Simulating the Spatio-Temporal Correlations of Clustered Wind Power Using Copula[J].Journal of Electrical Engineering & Technology,2013,8(6):1615-1625.
[18]  魏武雄.时间序列分析:单变量与多变量方法[M].北京:中国人民大学出版社,2009:1-30.
[19]  林卫星,文劲宇,艾小猛,等.风电功率波动特性的概率分布研究[J].中国电机工程学报,2012,32(1):38-46.
[20]  Lin Weixing,Wen Jinyu,Ai Xiaomeng,et al.Probability density function of wind power variations[J].Proceedings of the CSEE,2012,32(1):38-46(in Chinese).
[21]  Lee D,Baldick R.Analyzing the variability of wind power output through the power spectral density[C]//2012 IEEE Power and Energy Society General Meeting.San Diego,California:IEEE,2012:1-8.
[22]  林今,孙元章,李国杰,等.基于频域的风电场功率波动仿真:(一)模型及分析技术[J].电力系统自动化,2011,35(4):65-69.
[23]  Lin Jin,Sun Yuanzhang,Li Guojie,et al.Simulation of power fluctuation of wind farms based on frequency domain:part one model and analysis technique[J].Automation of Electric Power Systems,2011,35(4):65-69.
[24]  Apt J.The spectrum of power from wind turbines[J].Journal of Power Sources,2007,169(2):369-374.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133