全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2014 

采用基于分解的多目标进化算法的电力环境经济调度

DOI: 10.13335/j.1000-3673.pst.2014.06.024, PP. 1577-1584

Keywords: 环境经济调度,多目标进化算法,MOEA/D,Pareto最优前沿

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了准确、快速地求解电力系统环境经济调度(environmentaleconomicdispatching,EED)问题,将基于分basedondecomposition,MOEA/D)应用于电力调度领域,提出了基于MOEA/D的多目标环境经济调度算法。该算法首先采用Tchebycheff法将整个EEDPareto最优前沿的逼近问题分解为一定数量的单目标优化子问题,然后利用差分进化同时求解这些子问题,并在算法中加入约束处理及归一化操作,以获得最优的带约束EED问题的调度方案。最后,应用模糊集理论为决策者提供最优折中解。对IEEE30节点测试系统进行仿真计算,并与其它智能优化算法的调度方案对比。结果表明,该算法有效可行,且具有很好的收敛速度和求解精度。

References

[1]  Al Moubayed N,Petrovski A,McCall J.Multi-objective optimisation of cancer chemotherapy using smart PSO with decomposition[C]//2011 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (MDCM).Paris:IEEE,2011:81-88.
[2]  Konstantinidis A,Yang K.Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D[J].Applied Soft Computing,2011,11(6):4117-4134.
[3]  Li H,Zhang Q.Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II[J].IEEE Trans on Evolutionary Computation,2009,13(2):284-302.
[4]  Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm: NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[5]  Denny E,O'Malley M.Wind generation, power system operation, and emissions reduction[J].IEEE Trans on Power Systems,2006,21(1):341-347.
[6]  Talaq J H,El-Hawary F,El-Hawary M E.A summary of environmental/economic dispatch algorithms[J].IEEE Transactions on Power Systems,1994,9(3):1508-1516.
[7]  Granelli G P,Montagna M,Pasini G L,et al.Emission constrained dynamic dispatch[J].Electric Power Systems Research,1992,24(1):55-64.
[8]  Dhillon J S,Parti S C,Kothari D.Stochastic economic emission load dispatch[J].Electric Power Systems Research,1993,26(3):179-186.
[9]  Chang C S,Wong K P,Fan B.Security-constrained multiobjective generation dispatch using bicriterion global optimization[J].IEE Proceedings-Generation, Transmission and Distribution,1995,142(4):406-414.
[10]  Abido M A.Multiobjective evolutionary algorithms for electric power dispatch problem[J].IEEE Trans on Evolutionary Computation,2006,10(3):315-329.
[11]  Agrawal S,Panigrahi B K,Tiwari M K.Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch[J].IEEE Transactions on Evolutionary Computation,2008,12(5):529-541.
[12]  Abido M A.Multiobjective particle swarm optimization for environmental/economic dispatch problem[J].Electric Power Systems Research,2009,79(7):1105-1113.
[13]  Hota P K,Barisal A K,Chakrabarti R.Economic emission load dispatch through fuzzy based bacterial foraging algorithm[J].International Journal of Electrical Power & Energy Systems,2010,32(7):794-803.
[14]  Panigrahi B K,RavikumarPandi V,Das S,et al.Multiobjective fuzzy dominance based bacterial foraging algorithm to solve economic emission dispatch problem[J].Energy,2010,35(12):4761-4770.
[15]  Qu B Y,Suganthan P N,Pandi V R,et al.Multi objective evolutionary programming to solve environmental economic dispatch problem[C]//11th International Conference on Control Automation Robotics & Vision (ICARCV).Singapore:IEEE,2010:1673-1679.
[16]  王欣,秦斌,阳春华,等.基于混沌遗传混合优化算法的短期负荷环境和经济调度[J].中国电机工程学报,2006,26(11):128-133. Wang Xin,Qin Bin,Yang Chunhua,et al.Short term environmental economic generation scheduling based on chaos genetic hybrid optimization algorithm[J].Proceedings of the CSEE,2006,26(11):128-133(in Chinese).
[17]  马忠丽,王科俊,莫宏伟,等.基于免疫遗传算法的环境经济负荷调度[J].电力系统及其自动化学报,2006,18(1):98-103. Ma Zhongli,Wang Kejun,Mo Hongwei,et al.Economic emission load dispatch based on immune genetic algorithm[J].Proceedings of the CSU-EPSA,2006,18(1):98-103(in Chinese).
[18]  刘静,罗先觉.采用多目标随机黑洞粒子群优化算法的环境经济发电调度[J].中国电机工程学报,2010,30(34):105-111. Liu Jing,LuoXianjue.Environmental economic dispatching adopting multiobjective random black-hole particle swarm optimization algorithm[J].Proceedings of the CSEE,2010,30(34):105-111(in Chinese).
[19]  Zhang Q,Li H.MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J].IEEE Transactions on Evolutionary Computation,2007,11(6):712-731.
[20]  Zhang Q,Liu W,Li H.The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances[C]//IEEE Congress on Evolutionary Computation 2009.Trondheim:IEEE,2009:203-208.
[21]  Carvalho R,Saldanha R R,Gomes B N,et al.A multi-objective evolutionary algorithm based on decomposition for optimal design of Yagi-Udaantennas[J].IEEE Transactions on Magnetics,2012,48(2):803-806.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133