全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2015 

电力系统线性状态追踪方法

DOI: 10.13335/j.1000-3673.pst.2015.02.027, PP. 472-476

Keywords: 电力系统,状态估计,状态追踪,扩展卡尔曼滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统状态追踪方法一般基于扩展卡尔曼滤波方法求解,其缺点是由于电力系统量测方程的非线性,使得这些方法在求解的过程中必须对量测方程进行近似线性化,从而影响了估计精度,尤其是相邻断面的状态变量发生突变时,估计精度明显降低;传统方法在迭代的每一步中均需重新形成雅可比矩阵,因而计算效率较低。以上缺点影响了传统状态追踪方法的应用。提出一种基于精确线性化量测方程的线性状态追踪方法,所提方法的优点为在估计中无量测方程的近似线性化误差,因而估计精度较高;在迭代中雅可比矩阵均为常数矩阵,从而提高了计算效率。通过在IEEE系统上的仿真算例验证了所提方法的有效性和高效性。

References

[1]  于尔铿.电力系统状态估计[M].北京:水利电力出版社,1985:1-5.
[2]  丁军策,蔡泽祥,王克英.基于广域测量系统的状态估计研究综述[J].电力系统自动化,2006,30(7):98-103.Ding Junce,CaiZexiang,Wang Keying.An overview of state estimation based on wide-area measurement system[J].Automation of Electric Power Systems,2006,30(7):98-103(in Chinese).
[3]  Schweppe F C,Wildes J,Rom D B.Power system static-state estimation,part I’III[J].IEEE Trans on Power Apparatus and Systems,1970,89(1):120-135.
[4]  刘辉乐,刘天琪,黄志华.基于Kalman滤波原理的电力系统动态状态估计的研究综述[J].继电器,2005,32(20):62-66.Liu Huile,Liu Tianqi,Huang Zhihua.Research on dynamic state estimation based on Kalman theory in power system[J].Relay,2005,32(20):62-66(in Chinese).
[5]  黄姝雅,刘天琪,陈绩.动态状态估计中PMU配置的离散粒子群优化算法[J].电网技术,2006,30(24):68-72.Huang Shuya,Liu Tianqi,Chen Ji.Discrete particle swarm optimization algorithm for phasor measurement unit placement in dynamic state estimation[J].Power System Technology,2006,30(24):68-72(in Chinese).
[6]  卫志农,孙国强,庞博.无迹卡尔曼滤波及其平方根形式在电力系统动态状态估计中的应用[J].中国电机工程学报,2011,31(16):74-80.Wei Zhinong,Sun Guoqiang,Pang Bo.Application of UKF and SRUKF to power system dynamic state estimation[J].Proceedings of the CSEE,2011,31(16):74-80(in Chinese).
[7]  Debs A S,Larson R.A dynamic estimator for tracking the state of a power system[J].IEEE Transactions onPower Apparatus and Systems,1970(7):1670-1678.
[8]  贺觅知.基于卡尔曼滤波的电力系统动态状态估计算法研究[D].成都:西南交通大学,2006.
[9]  张伯明,王世缨,相年德.电力系统实时运行状态的估计和预报[J].中国电机工程学报,1991,11(S):68-74.Zhang Boming,Wang Shiying,Xiang Niande.Estimation and forcasting of real-time power system operation states[J].Proceedings of the CSEE,1991,11(S):68-74(in Chinese).
[10]  刘辉乐,刘天琪,彭锦新.基于PMU的分布式电力系统动态状态估计新算法[J].电力系统自动化,2005,29(4):34-39.Liu Huile,Liu Tianqi,PengJinxin.New distributed power system dynamic state estimation algorithm based on PMU[J].Automation of Electric Power Systems,2005,29(4):34-39(in Chinese).
[11]  李虹,李卫国,毕天姝,等.基于WAMS的电力系统实时状态估计和预报[J].电力系统自动化,2009,33(16):35-39.Li Hong,Li Weiguo,Bi Tianshu,et al.Power system real-time state estimation and prediction based on WAMS[J].Automation of Electric Power Systems,2009,33(16):35-39(in Chinese).
[12]  Mandal J K,Sinha A K,Roy L.Incorporating nonlinearities of measurement function in power system dynamic state estimation[J].IEEEProc Generation Transmission and Distribution,1995,142(3):289-296.
[13]  Huang S J,Shih K R.Dynamic-state-estimation scheme including nonlinear measurement function considerations[J].IEEE ProcGeneration Transmission and Distribution,2002,149(6):673-678.
[14]  毕天姝,陈亮,薛安成,等.考虑调速器的发电机动态状态估计方法[J].电网技术,2013,37(12):3433-3438.Bi Tianshu,Chen Liang,XueAncheng,et al.A dynamic state estimation method considering speed governors[J].Power System Technology,2013,37(12):3433-3438(in Chinese).
[15]  Gomez-Quiles C,de la Villa Jaen A,Gomez-Exposito A.A factorized approach to WLS state estimation[J].IEEE Trans on Power System,2011,26(3):1724-1732.
[16]  Gomez-Exposito A,Gomez-Quiles C,de la Villa Jaen A.Bilinear power system state estimation[J].IEEE Trans on Power Systems,2012, 27(1):493-501.
[17]  Chen Q,Chen Y,Ma J,et al.A novel linear dynamic state estimation approach based on exactly linear measurement equations[C]//Hong Kong:2014 International Conference on Electrical and Electronic Engineering.
[18]  卓亮,陈利跃,何星.基于混合量测的动态状态估计算法研究[J].控制工程,2013,20(1):155-157.Zhuo Liang,Chen Liyue,HeXing.Study for mixed measurement-based dynamic state estimation algorithm[J].Control Engineering of China,2013,20(1):155-157(in Chinese).
[19]  占荣辉,张军.非线性滤波理论与目标跟踪应用[M].北京:国防工业出版社,2013:40-46.
[20]  李大路,李蕊,孙元章.混合量测下基于UKF的电力系统动态状态估计[J].电力系统自动化,2010,34(17):17-21.Li Dalu,Li Rui,Sun Yuanzhang.Power system dynamic state estimation with mixed measurements based on UKF[J].Automation of Electric Power Systems,2010,34(17):17-21(in Chinese).
[21]  李强,周京阳,于尔铿,等.基于混合量测的电力系统状态估计混合算法[J].电力系统自动化,2006,29(19):31-35.Li Qiang,Zhou Jingyang,Yu Erkeng,et al.A hybrid algorithm for power system state estimation based on PMU measurement and SCADA measurement[J].Automation of Electric Power Systems,2006,29(19):31-35(in Chinese).
[22]  卫志农,李阳林,郑玉平.基于混合量测的电力系统线性动态状态估计算法[J].电力系统自动化,2007,31(6):39-43.Wei Zhinong,Li Yanglin,ZhengYuping.A mixed measurement-based linear dynamic state estimation algorithm for power systems[J].Automation of Electric Power Systems,2007,31(6):39-43(in Chinese).
[23]  卫志农,周奕,李阳林,等.基于信息融合理论的动态状态估计探讨[J].电力系统自动化,2008,32(4):103-107.Wei Zhinong,Zhou Yi,Li Yanglin,et al.Discussion on dynamic state estimation based on information fusion theory[J].Automation of Electric Power Systems,2008,32(4):103-107(in Chinese).
[24]  Valverde G,Terzija V.UnscentedKalman filter for power system dynamic state estimation[J].IET Generation,Transmission& Distribution,2011,5(1):29-37.
[25]  赵洪山,田甜.基于自适应无迹卡尔曼滤波的电力系统动态状态估计[J].电网技术,2014,38(1):188-192.Zhao Hongshan,TianTian.Dynamic state estimation for power system based on an adaptive unscented Kalman filter[J].Power System Technology,2014,38(1):188-192(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133