全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2015 

基于模型的风电机组变桨距系统故障检测

DOI: 10.13335/j.1000-3673.pst.2015.02.022, PP. 440-444

Keywords: 风电机组,模型,执行机构,传感器,故障检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

变桨距系统是风电机组的高频故障部件之一,对其进行早期故障检测,可以有效提高风电机组的运行可靠性,减少不必要的损失。采用基于风电机组物理特性的数学模型的方法对其进行故障检测。首先,建立了风电机组变桨距系统及其它部件的动态模型,描述出该模型的输入输出关系;然后,将该模型与实际系统并行运行,并将模型输出与实际系统输出比较产生残差,随后采用残差范数的均值作为故障判别函数进行故障检测;最后,通过对变桨距执行机构和桨距角传感器的故障进行仿真,验证了所用方法的正确性和有效性。

References

[1]  Nilsson J,Bertling L M.Survey of failures in wind power systems with focus on Swedish wind power plant during 1997-2005[J].IEEE Transactions on Energy Conversion,2007,22(1):167-173.
[2]  Ribrant J.Reliability performance and maintenance:a survey of failure in wind power systems[R].Master thesis,Sweden:KTH School of Electrical Engineering,2006.
[3]  Tavner P J,Xiang J,Spinato F.Reliability analysis for windturbines[J].Journal of Wind Energy,2006,10(1):1-18.
[4]  中国风力发电网.2010年以来风电机组脱网事故及风电机组设备故障[EB/OL].http://www.fenglifadian.com/news/china/251256G-4A.html.
[5]  张镇,关书强.风电机组故障统计分析研究[J].风能,2013(8):68-71.Zhang Zhen,Guan Shuqiang.An analysis of wind turbine fault statistics[J].Wind Energy,2013(8):68-71(in Chinese).
[6]  Kusiak A,Verma A.A data-driven approach for monitoring blade pitch faults in wind turbines[J].IEEE Transactions on Sustainable Energy,2011,2(1):87-96.
[7]  李学伟.基于数据挖掘的风电机组状态预测及变桨系统异常识别[D].重庆:重庆大学,2012.
[8]  梁中华,安占国,朴兴哲,等.基于灰色理论的风机变桨距驱动器故障预测[J].沈阳工业大学学报,2011,33(6):629-634.
[9]  Han X,Zhang H,Chen Y,et al.Fault diagnosis of hydraulic variable pitch for wind turbine based on qualitative and quantitative analysis//2012 10th World Congress on Intelligent Control and Automation (WCICA).Beijing:IEEE,2012:3181-3185.
[10]  Xiukun Wei,Michel Verhaegen,Tim van Engelen.Sensor fault detection and isolation for wind turbines based on subspace identification and Kalman filter techniques[J].International Journal of Adaptive Control and Signal Processing,2010,24(8):687-707.
[11]  Georg S,Schulte H.Actuator fault diagnosis and fault-tolerant control of wind turbines using a Takagi-Sugeno sliding mode observer//2013 Conference on Control and Fault-Tolerant Systems.Nice:IEEE,2013:516-522.
[12]  Simani S,Farsoni S,Castaldi P.Robust actuator fault diagnosis of a wind turbine benchmark model[C]//2013 IEEE 52nd Annual Conference on Decision and Control(CDC).Florence:IEEE,201:4422-4427.
[13]  Boulkroune B,Galvez-Carrillo M,Kinnaert M.Combined signal and model-based sensor fault diagnosis for a doubly fed induction generator[J].IEEE Transaction on Control Systems Technology,2013,21(5):1771-1783.
[14]  Mollet Y,Gyselinck J,Meinguet F.Current sensor fault detection and isolation combining mode-based and signal-based algorithms in PMSG drives[C]//2013 15th European Conference on Power Electronics and Application(EPE).Lille:IEEE,2013:1-10.
[15]  徐大平,柳亦兵,吕跃刚.风力发电原理[M].北京:机械工业出版社,2011:111-123.
[16]  肖运启,贺贯举,王昆朋,等.电网约束下变速风电机组的限负荷控制策略[J].电网技术,2014,38(2):456-462.Xiao Yunqi,He Guanju,Wang Kunpeng,et al.De-load control strategy for variable speed wind turbine generation units under constraint of power grid[J].Power System Technology,2014,38(2):456-462(in Chinese).
[17]  Carl Svärd,Mattias Nyberg.Automated design of an FDI-system for the wind turbine benchmark[J].Journal of Control Science and Engineering,2012,18(1):8307-8315.
[18]  魏秀坤,秦勇,贾利民.鲁棒故障检测与故障估计理论及应用[M].北京:科学出版社,2012:183-187.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133