全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2015 

风电功率爬坡事件预测时间窗口的选取

DOI: 10.13335/j.1000-3673.pst.2015.02.018, PP. 414-419

Keywords: 爬坡事件,预测时间窗口,持续时间,可预测性

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了完整、高效地预测爬坡事件,提出在一个合适的时间窗口内进行风电功率预测和爬坡事件识别的方法,并重点讨论如何选取合适的预测时间窗。首先通过历史爬坡事件的识别,统计爬坡持续时间的分布规律;利用数据相关性分析研究实例样本数据的可预测性;综合2者的结果确定爬坡预测时间窗口取值的可选范围。其次,基于预测时间窗的目标要求,提出可能的分析指标,在给定取值范围内寻找满足要求的最优时间窗口作为所求预测窗。最后以美国BPA地区的风电功率数据为实例,仿真求出该数据集的预测窗口大小为4.5h,通过多个评估指标验证了该预测时间窗对实例爬坡预测的有效性。该工作为爬坡事件的预测奠定了重要基础。

References

[1]  李俊峰,蔡丰波,乔黎明.2012中国风电发展报告[R].北京:中国环境科学出版社,2012.
[2]  戚永志,刘玉田.风电高风险爬坡有限度控制[J].中国电机工程学报,2013,33(13):69-75.Qi Yongzhi,Liu Yutian.Finite control of high risk wind power ramping [J].Proceedings of the CSEE,2013,33(13):69-75(in Chinese).
[3]  Francis N.Predicting sudden changes in wind power generation[J].North American Windpower,2008,5(9):58-60.
[4]  Ferreira C,Gama J,Matias L,et al.A survey on wind power ramp forecasting[R].Argonne National Laboratory(ANL),2011.
[5]  Kamath C.Understanding wind ramp events through analysis of historical data[C]//2010 IEEE PES Transmission and Distribution Conference and Exposition.New Orleans,La:IEEE,2010:1-6.
[6]  Sevlian R,Rajagopal R.Detection and Statistics of Wind Power Ramps[J].IEEE Transactions on Power Systems,2013,28(4):3610-3620.
[7]  Cutler N,Kay M,Jacka K,et al.Detecting,categorizing and forecasting large ramps in wind farm power output using meteorological observations and WPPT[J].Wind Energy,2007,10(5):453-470.
[8]  Zareipour H,Huang D,Rosehart W.Wind power ramp events classification and forecasting:A data mining approach[C]//2011 IEEE Power and Energy Society General Meeting.San Diego,CA:IEEE,2011:1-3.
[9]  谷兴凯,范高锋,王晓蓉,等.风电功率预测技术综述[J].电网技术,2007,31(2):335-338.GuXingkai,Fan Gaofeng,Wang Xiaorong,et al.Summarization of wind power prediction technology[J].Power System Technology,2007,31(2):335-338(in Chinese).
[10]  冯双磊,王伟胜,刘纯,等.风电场功率预测物理方法研究[J].中国电机工程学报,2010,30(2):1-6.FengShuanglei,Wang Weisheng,Liu Chun,et al.Study on the physical approach to wind power prediction[J].Proceedings of the CSEE,2010,30(2):1-6(in Chinese).
[11]  潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86.Pan Difu,Liu Hui,Li Yanfei.A wind speed forecasting optimization model for wind farms based on time series analysis and Kalman filter algorithm[J].Power System Technology,2008,32(7):82-86(in Chinese).
[12]  罗海洋,刘天琪,李兴源.风电场短期风速的混沌预测方法[J].电网技术,2009,33(9):67-71.LuoHaiyang,Liu Tianqi,Li Xingyuan.Chaotic forecasting method of short-term wind speed in wind farm[J].Power System Technology,2009,33(9):67-71(in Chinese).
[13]  范高锋,王伟胜,刘纯.基于人工神经网络的风电功率短期预测系统[J].电网技术,2008,32(22):72-76.Fan Gaofeng,Wang Weisheng,Liu Chun.Artificial neural network based wind power short term prediction system[J].Power System Technology,2008,32(22):72-76(in Chinese).
[14]  Yang L,Tian F,Hu H.Proper forecast window in ensemble stream flow prediction (ESP) approach[C]//AGU Fall Meeting Abstracts.San Francisco,California,USA:American Geophysical Union(AGU),2011:1496.
[15]  Potter C W,Grimit E,Nijssen B.Potential benefits of a dedicated probabilistic rapid ramp event forecast tool[C]//PSCE'09Power Systems Conference and Exposition.Seattle,WA:IEEE,2009:1-5.
[16]  Greaves B,Collins J,Parkes J.et al.Temporal forecast uncertainty for ramp events[J].Wind Engineering,2009,33(4):309-319.
[17]  孙国强,卫志农,翟玮星.基于 RVM 与 ARMA 误差校正的短期风速预测[J].电工技术学报,2012,27(8):187-193.Sun Guoqiang,Wei Zhinong,ZhaiWeixing.Short term wind speed forecasting based on RVM and ARMA error correcting[J].Transactions of China Electrotechnical Society,2012,27(8):187-193(in Chinese).
[18]  杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.Yang Xiuyuan,Xiao Yang,Chen Shuyong.Wind speed and generated power forecasting in wind farm[J].Proceedings of the CSEE,2005,25(11):1-5(inChinese).
[19]  Chen C,Liaw A,Breiman L.Using random forest to learn imbalanced data[J].Berkeley:University of California,2004.
[20]  叶圣永,王晓茹,刘志刚,等.电力系统暂态稳定概率评估方法[J].电网技术,2009,33(6):19-23.Ye Shengyong,Wang Xiaoru,Liu Zhigang,et al.Approach to assess power system transient stability probability[J].Power System Technology,2009,33(6):19-23(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133