廖旎焕,胡智宏,马莹莹,等.电力系统短期负荷预测方法综述[J].电力系统保护与控制,2011,39(1):147-152.Liao Nihuan,Hu Zhihong,Ma Yingying,et al.Review of the short-term load forecasting methods of electric power system[J].Power System Protection and Control,2011,39(1):147-152(in Chinese).
[2]
刘国徽,刘小满,余雪芳,等.基于ARIMA和LS-SVM组合模型的短期负荷预测[J].广东电力,2010,23(11):14-17.Liu Guohui,Liu Xiaoman,Yu Xuefang,et al.Short-term load forecasting based of ARIMA-LSVM Model[J].Guangdong Electric Power,2010,23(11):14-17(in Chinese).
[3]
梁志珊,王丽敏,付大鹏,等.基于Lyapunov指数的电力系统短期负荷预测[J].中国电机工程学报,1998,18(5):368-371,376.Liang Zhishan,Wang Liming,Fu DaPeng,et al.Short-time load forecasting based on the maximum lyapunov exponent[J].Proceedings of the CSEE,1998,18(5):368-371,376 (in Chinese).
[4]
何洋,邹波,李文启,等.基于混沌理论的电力系统短期负荷预测的局域模型[J].华北电力大学学报(自然科学版),2013,40(4):43-50.He Yang,Zou Bo,Li Wenqi,et al.A chaos theory based local model for short-term load forecasting[J].Journal of North China Electric Power University (Natural Science Edition),2013,40(4):43-50(in Chinese).
[5]
祖哲,毕贵红,刘力.基于混沌理论的电力系统短期负荷预测模型研究[C]// 2012 International Conference on Electronic Information and Electrical Engineering.Changsha,Hunan,China:Atlantis Press,2012:904-911.
[6]
陈刚,周杰,张雪君,等.基于BP 与RBF 级联神经网络的日负荷预测[J].电网技术,2009,33(12):101-105.Chen Gang,Zhou Jie,Zhang Xuejun,et al.A daily load forecasting methods based on cascaded back propagation and radial basis function neural networks[J].Power System Technology,2009,33(12):101-105(in Chinese).
[7]
张平,潘学萍,薛文超.基于小波分解模糊灰色聚类和BP神经网络的短期负荷预测[J].电力自动化设备,2012,32(11):121-125,141.Zhang Ping,Pan Xueming,Xue Wenchao.Short-term load forecasting based on wavelet decomposition, fuzzy gray correlation clustering and BP neural network[J].Electric Power Automation Equipment ,2012,32(11):121-1125,141(in Chinese).
[8]
杨奎河,王宝树,赵玲玲.基于神经网络矫正的非线性短时负荷预测模型[J].系统工程与电子技术,2004,26(11):1710-1713.Yang Kuihe,Wang Baoshu,Zhao Lingling.Nonlinear short-term load forecasting model based on neural networks correction[J].Systems Engineering and Electronics,2004,26(11):1710-1713(in Chinese).
[9]
周建中,张亚超,李清清,等.基于动态自适应径向基函数网络的概率性短期负荷预测[J].电网技术,2010,34(3):37-41.Zhou Jianzhong,Zhang Yachao,Li Qingqing,et al.Probabilistic short-term load forecasting based on dynamic self-adaptive radial basis function network[J].Power System Technology,2010,34(3):37-41(in Chinese).
[10]
王孔森,盛戈皞,孙旭日,等.基于径向基神经网络的输电线路动态容量在线预测[J].电网技术,2013,37(6):1719-1725.Wang Kongsen,Sheng Gehao,Sun Xuri,et al.Online prediction of transmission dynamic line rating based on radial basis function neural network[J].Power System Technology,2013,37(6):1719-1725(in Chinese).
[11]
刘瑞叶,黄磊.基于动态神经网络的风电场输出功率预测[J].电力系统自动化,2012,36(11):19-22,37.Liu Ruiye,WangLei.Wind power forecasting based on dynamic neural network[J].Automation of Electric Systems,2012,36(11):19-22,37(in Chinese).
[12]
Du Juan.An improved TSK-Type dynamic fuzzy neural network approach for short-term load forecasting[J].Power System Technology,2010,34(4):69-75.
[13]
Jaeger H,Haas H.Harnessing nonlinearity:predicting chaotic systems and saving energy in wireless communication[J].Science,2004,304(5667):78-80.
[14]
Song Q S,Zhao X M,Feng Z,et al.Hourly electric load forecasting algorithm based on echo state neural network[C]//2011 23rd Chinese Control and Decision Conference.Mianyang,China:IEEE,2011:3893-3897.
[15]
嵇灵,牛东晓,吴焕苗.基于贝叶斯框架和回声状态网络的日最大负荷预测研究[J].电网技术,2012,36(11):82-86.Ji Ling,Niu Dongxiao,Wu Huanmiao.Daily peak load forecasting based on Bayesian framework and echo state network[J].Power System Technology,2012,36(11):82-86(in Chinese).
[16]
Deihimi A,Showkati H.Application of echo state networks in short-term electric load forecasting[J].Energy,2012,39(1):327-340.
[17]
Deihimi A,Orang O,Showkati H.Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction[J].Energy,2013,57(1):382-401.
[18]
Shi Z,Han M.Support vector echo-state machine for chaotic time-series prediction[J].IEEE Trans on Neural Networks,2007,18(2):359-372.
[19]
Ma Q L,Chen W B.Modular state space of echo state network[J].Neurocomputing,2013,122(25):406-417.
[20]
Takens F.Detecting strange attractors in turbulence[J].Lecture Notes in Math,1981,898(1):366-381.
[21]
韩敏,史志伟,郭伟.储备池状态空间重构与混沌时间序列预测[J].物理学报,2007,56(1):43-50.Han Min,Shi Zhiwei,Guo Wei.Reservoir neural state reconstruction and chaotic time series prediction[J].Acta Physica Sinica,2007,56(1):43-50(in Chinese)
[22]
Sollich P,Krogh A.Learning with ensembles:how over-fitting can be useful[C]//1996 Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,1996:190-196.