全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2015 

采用信息熵和组合模型的风电机组异常检测方法

DOI: 10.13335/j.1000-3673.pst.2015.03.023, PP. 737-743

Keywords: 风电机组,数据采集与监控,状态参数建模,组合模型,信息熵,异常检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对电力系统可靠性评估中蒙特卡罗方法误差收敛相对较慢的特点,将以低偏差点列抽样的拟蒙特卡罗方法应用于可靠性评估中。介绍了拟蒙特卡罗方法的原理,并在误差分析方面与蒙特卡罗方法进行比较。进一步介绍了Sobol低偏差点列的构造方法。建立了以Sobol点列为抽样点的拟蒙特卡罗模拟可靠性计算模型,并与重要抽样法相结合。对3机系统和RTS79测试系统分别进行标准非序贯蒙特卡罗模拟和Sobol点列拟蒙特卡罗模拟,计算指标EDNS与LOLP,并比较误差收敛曲线。结果表明,拟蒙特卡罗方法

References

[1]  Hameed Z,Hong Y S,Cho Y M,et al.Condition monitoring and fault detection of wind turbines and related algorithms: a review[J].Renewable and Sustainable Energy Reviews,2009,13(1):1-39.
[2]  Yang W X,Jiang J S.Wind turbine condition monitoring and reliability analysis by SCADA information[C]//International Conference on Mechanic Automation and Control Engineering.China:IEEE,2011:1872-1875.
[3]  IEC.IEC61400-25-1 Wind turbines - Part 25-1:Communications for monitoring and control of wind power plants - Overall description of principles and models[S].Switzerland:International Electrotechnical Commission,2006.
[4]  Zaher A,McArthur S D J,Infield D G,et al.Online wind turbine fault detection through automated SCADA data analysis[J].Wind Energy,2009,12(6):574-593.
[5]  Feng Y H,Qiu Y N,Crabtree C J,et al.Use of SCADA and CMS signals for failure detection and diagnosis of a wind turbine gearbox[C]//Proceeding of European Wind Energy Conference.Brussels,Belgium:European Wind Energy Association,2011:17-19.
[6]  潘学萍,高远,金宇清,等.风电机组驱动系统参数辨识[J].电网技术,2013,37(7):1990-1994.Pan Xueping,Gao Yuan,Jin Yuqing,et al.Parameter identification of drive system for fixed-speed wind power generation Units[J].Power System Technology,2013,37(7):1990-1994(in Chinese).
[7]  安学利,赵明浩,蒋东翔,等.基于支持向量机和多源信息的直驱风力发电机组故障诊断[J].电网技术,2011,35(4):117-122.An Xueli,Zhao Minghao,Jiang Dongxiang,et al.Direct-drive wind turbine fault diagnosis based on support vector machine and multi-source information[J].Power System Technology,2011,35(4):117-122(in Chinese).
[8]  李辉,胡姚刚,唐显虎,等.并网风电机组在线运行状态评估方法[J].中国电机工程学报,2010,30(33):103-109.Li Hui,Hu Yaogang,Tang Xianhu,et al.Method for on-line operation condition assessment for a grid-connected wind turbine generator system[J].Proceedings of the CSEE,2010,30(33):103-109(in Chinese).
[9]  Yang W X,Court R,Jiang J S.Wind turbine condition monitoring by the approach of SCADA data analysis[J].Renewable Energy,2013,53(5):365-376.
[10]  Andrew K,Anoop V.Analyzing bearing faults in wind turbines:A data-mining approach[J].Renewable Energy,2012,48(12):110-116.
[11]  Andrew K,Li W Y.Virtual models for prediction of wind turbine parameters[J].IEEE Trans on Energy Conversion,2010,25(1):245-252.
[12]  苏勋文,米增强,陈盈今,等.基于运行数据的风电机组建模方法[J].电力系统保护与控制,2010,38(9):50-54.Su Xunwen,Mi Zengqiang,Chen Yingjin,et al.Method for modeling wind turbines based on operating data[J].Power System Protection and Control,2010,38(9):50-54(in Chinese).
[13]  Schlechtingen M,Ferreira Santos I.Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection[J].Mechanical Systems and Signal Processing,2011,25(5):1849-1875.
[14]  艾延廷,付琪,田晶,等.基于融合信息熵距的转子裂纹-碰摩耦合故障诊断方法[J].航空动力学报,2013,28(10):2161-2166.Ai Yanting,Fu Qi,Tian Jing,et al.Diagnosis method for crack-rubbing coupled fault in rotor system based on integration of information entropy distance[J].Journal of Aerospace Power,2013,28(10):2161-2166(in Chinese).
[15]  张举,王兴国,李志雷.小波包能量熵神经网络在电力系统故障诊断中的应用[J].电网技术,2006,30(5):72-75.Zhang Ju,Wang Xingguo,Li Zhilei.Application of neural network based on wavelet packet-energy entropy in power system fault diagnosis[J].Power System Technology,2006,30(5):72-75(in Chinese).
[16]  齐敏芳,付忠广,景源,等.基于信息熵与主成分分析的火电机组综合评价方法[J].中国电机工程学报,2013,33(2):58-64.Qi Mingfang,Fu Zhongguang,Jing Yuan,et al.A comprehensive evaluation method of power plant units based on information entropy and principal component analysis[J].Proceedings of the CSEE,2013,33(2):58-64(in Chinese).
[17]  李如琦,苏浩益.基于最大熵原理的旋转备用方案风险评估[J].电网技术,2012,36(3):241-245.Li Ruqu,Su Haoyi.Risk assessment of spinning reserve scheme based on maximum entropy principle[J].Power System Technology,2012,36(3):241-245(in Chinese).
[18]  IEC.IEC61400-12-1 Wind turbines - Part 12-1:Power performance measurements of electricity producing wind turbines[S].Switzerland:International Electrotechnical Commission,2005.
[19]  杨廷方,周力行,李景禄,等.基于最优权值的组合模型诊断变压器故障[J].电网技术,2013,37(1):190-194.Yang Tingfang,Zhou Lixing,Li Jinglu,et al.Power transformer fault diagnosis based on optimal weights combined model[J].Power System Technology,2013,37(1):190-194(in Chinese).
[20]  王贺,胡志坚,张翌晖,等.基于聚类经验模态分解和最小二乘支持向量机的短期风速组合预测[J].电工技术学报,2014,29(4):237-245.Wang He,Hu Zhijian,Zhang Yihui,et al.A hybrid model for short-term wind speed forecasting based on ensemble empirical mode decomposition and least squares support vector machines[J].Transactions of China Electrotechnical Society,2014,29(4):237-245(in Chinese).
[21]  黎静华,韦化.基于诱导有序加权平均算子的最优组合短期负荷预测[J].电网技术,2011,35(10):177-182.Li Jinghua,Wei Hua.An optimal combinational model for short-term load forecasting based on induced ordered weighted averaging operator[J].Power System Technology,2011,35(10):177-182(in Chinese).
[22]  龙瑞华,毛弋,毛李帆,等.基于诱导有序加权平均算子和马尔可夫链的中长期电力负荷组合预测模型[J].电网技术,2010,34(3):150-156.Long Ruihua,Mao Yi,Mao Lifan.A combination model for medium- and long-term load forecasting based on induced ordered weighted averaging operator and markov chain[J].Power System Technology,2010,34(3):150-156(in Chinese).
[23]  周荫清.信息理论基础[M].北京:北京航空航天大学出版社,2012:8-16.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133